Manufacturing process encoding through natural language processing for prediction of material properties

过程(计算) 编码(内存) 自然(考古学) 计算机科学 制造工艺 工艺工程 自然语言处理 生化工程 材料科学 人工智能 程序设计语言 工程类 复合材料 生物 古生物学
作者
Ana P. O. Costa,Mariana R. R. Seabra,J De,Abel D. Santos
出处
期刊:Computational Materials Science [Elsevier]
卷期号:237: 112896-112896 被引量:11
标识
DOI:10.1016/j.commatsci.2024.112896
摘要

Knowledge of manufacturing processes is crucial to determine the final properties of a material, thus this work focuses on analyzing the relationship between final properties, chemical composition, and manufacturing process through data analysis. Furthermore, techniques of natural language processing are used to encode the manufacturing process as input in the neural network. The work consisted of two main parts: firstly, the relevant data was gathered, cleaned-up, and analyzed using statistical and probabilistic methods, K-means, and Principal Components Analysis (PCA), and secondly, a model was developed to predict elongation, yield, and tensile strength. Fully Connected Neural Network (FCNN) algorithms were used to build the aforementioned model. In addition, in order to avoid overfitting and evaluate the model dropout function and K-fold cross-validation are incorporated. Results demonstrated reasonable accuracy in elongation, yield, and tensile strength. Two cases of mechanical properties prediction of stainless steel alloy were presented, first, an existing alloy that was not in the training and test set, and second a suggestion of a new stainless steel alloy, which combines good YS, UTS, and Pitting resistance equivalent number (PREN). Additionally, it was considered an example from the TRIP family to showcase the tool's versatility across various steel types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
小阳阳5010发布了新的文献求助10
5秒前
李德保完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
LMY发布了新的文献求助10
8秒前
8秒前
EachannyChanny完成签到,获得积分20
8秒前
脑洞疼应助wdw2501采纳,获得10
9秒前
小b亮完成签到,获得积分10
9秒前
LTT发布了新的文献求助10
10秒前
CipherSage应助太清采纳,获得10
10秒前
朱琳完成签到,获得积分10
10秒前
星星完成签到,获得积分10
11秒前
11秒前
Yong发布了新的文献求助10
12秒前
达雨应助顺心的雅绿采纳,获得10
12秒前
Jasper应助和谐诗双采纳,获得10
13秒前
多情紫霜发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
勤劳宛菡发布了新的文献求助10
15秒前
丘比特应助天真玲采纳,获得10
16秒前
夜白应助飘逸惠采纳,获得20
16秒前
胡子完成签到,获得积分10
16秒前
16秒前
16秒前
小蘑菇应助doufly采纳,获得10
17秒前
17秒前
朱琳发布了新的文献求助10
17秒前
18秒前
科研通AI6应助在河之洲采纳,获得10
19秒前
汉堡包应助BeBrave1028采纳,获得10
19秒前
19秒前
拟好啊完成签到,获得积分10
19秒前
LTT完成签到,获得积分20
19秒前
19秒前
Guochunbao完成签到,获得积分10
20秒前
我是老大应助old幽露露采纳,获得10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554351
求助须知:如何正确求助?哪些是违规求助? 4638931
关于积分的说明 14654584
捐赠科研通 4580716
什么是DOI,文献DOI怎么找? 2512453
邀请新用户注册赠送积分活动 1487226
关于科研通互助平台的介绍 1458129