Hyperspectral imaging coupled with machine learning for classification of anthracnose infection on mango fruit

高光谱成像 主成分分析 胶孢炭疽菌 支持向量机 人工智能 果实腐烂 光谱特征 园艺 模式识别(心理学) 生物 计算机科学 遥感 地质学
作者
Ubonrat Siripatrawan,Yoshio Makino
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:309: 123825-123825 被引量:24
标识
DOI:10.1016/j.saa.2023.123825
摘要

Anthracnose is the major plant disease causing an economic loss of mango fruit. Anthracnose symptom is not visible at a quiescent stage and the infected fruit often enters the food chain before the infection is known. Detection of a pre-symptomatic anthracnose infection is thus, crucial to prevent the infected fruit from entering the food chain. This research applied hyperspectral imaging (HSI) spectroscopy integrated with machine learning (ML) including principal component analysis (PCA) and support vector machine (SVM) for rapid identification of quiescent infection of anthracnose in mango fruit. Mango fruit (Nam Dok Mai Si Thong) was artificially infected with Colletotrichum gloeosporioides and stored at 20 °C and 90 % RH. The HSI was used to collect the spectral and spatial data of the samples. PCA and SVM were respectively performed to explore the hyperspectral data and to classify different symptom severities. The obtained spectral data can be recognized as fingerprints ascribing to the metabolites produced by C. gloeosporioides and the decomposed fruit tissues caused by the fungal infection. The HSI integrated with ML was able to not only detect the anthracnose infection at a latent stage before the onset of disease symptoms but also correctly classify different symptom severities. The symptom maps were also constructed using false-color image processing to simplify the data visualization of different symptom severities. The capability of detecting a pre-symptomatic anthracnose infection is a key advantage of the developed ML-assisted HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hou完成签到,获得积分10
3秒前
jiang发布了新的文献求助10
4秒前
高CA完成签到,获得积分10
4秒前
细心枫叶发布了新的文献求助10
5秒前
田様应助shelly采纳,获得10
5秒前
科目三应助方三问采纳,获得10
5秒前
8R60d8应助负责的方盒采纳,获得10
5秒前
sj发布了新的文献求助40
6秒前
faiting发布了新的文献求助10
6秒前
6秒前
7秒前
hh发布了新的文献求助10
7秒前
bkagyin应助yeyeye采纳,获得10
8秒前
8秒前
sisi关注了科研通微信公众号
9秒前
瘦瘦以云完成签到,获得积分10
9秒前
chenqiumu应助疯狂的冬瓜采纳,获得30
9秒前
Ling完成签到,获得积分10
10秒前
耍酷安蕾发布了新的文献求助10
10秒前
10秒前
Owen应助Arlie采纳,获得10
11秒前
nobody完成签到,获得积分10
11秒前
11秒前
wangling2333完成签到,获得积分10
12秒前
机灵的背包完成签到,获得积分10
12秒前
13秒前
13秒前
王昊雨发布了新的文献求助10
13秒前
浮游应助yhl采纳,获得10
13秒前
酷波er应助哈哈采纳,获得10
14秒前
14秒前
王福鑫发布了新的文献求助10
15秒前
15秒前
科研麻瓜发布了新的文献求助10
16秒前
大个应助Leon采纳,获得10
16秒前
17秒前
李大王完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262360
求助须知:如何正确求助?哪些是违规求助? 4423393
关于积分的说明 13769561
捐赠科研通 4298047
什么是DOI,文献DOI怎么找? 2358231
邀请新用户注册赠送积分活动 1354555
关于科研通互助平台的介绍 1315726