Bionic Design and Optimization on the Flow Channel of a Legged Robot Joint Hydraulic Drive Unit Based on Additive Manufacturing

接头(建筑物) 机器人 流量(数学) 频道(广播) 计算机科学 工程类 控制工程 汽车工程 结构工程 电气工程 人工智能 物理 机械
作者
Zhipeng Huang,Chenhao Du,Chenxu Wang,Qianran Sun,Yuepeng Xu,Lizhi Shao,Bin Yu,Guoliang Ma,Xiangdong Kong
出处
期刊:Biomimetics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (1): 13-13 被引量:5
标识
DOI:10.3390/biomimetics9010013
摘要

The joint hydraulic drive unit (HDU) serves as a pivotal element in enabling the high-performance movements of legged robots. Functioning as the conduit linking the oil source and the actuator, the hydraulic flow channel significantly impacts actuator performance. Hence, optimizing the HDU flow channel becomes imperative, enhancing not only HDU efficiency but also the overall system performance. This paper introduces a novel approach by aligning the hydraulic flow channel of the joint HDU with the arteriovenous layout of the cardiac vascular system, departing from the conventional machining flow channel model. Through simulations determining the optimal range of the vascular branch radius and angle, this study guides the design optimization of the joint HDU flow channel. With the primary optimization goal of reducing pressure loss, the study compares simulation outcomes of various flow channel models—linear, variable excessive radius, and the multidimensional Bessel curve—tailored to suit the arrangement specifics of the joint HDU. Further validating these designs, the flow channels are fabricated using additive manufacturing for experimental verification. The integration of simulation analyses and pressure loss testing reveals a remarkable reduction of over 40% in pressure loss for the bionic flow channel compared to the conventional machining form. This empirical evidence strongly substantiates the bionic flow channel’s superior efficacy in pressure loss reduction. The findings presented herein offer valuable insights for the development of low-loss flow channels in joint HDUs, thereby presenting a new avenue for designing energy-efficient, high power-to-weight ratio legged robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
3秒前
5秒前
ffff完成签到,获得积分10
6秒前
6秒前
nlm完成签到,获得积分20
6秒前
CCD发布了新的文献求助10
8秒前
10秒前
谷雨下完成签到,获得积分10
14秒前
地表飞猪应助ohhhh采纳,获得10
15秒前
kai发布了新的文献求助10
16秒前
英姑应助yyy采纳,获得10
16秒前
YangYue完成签到,获得积分10
16秒前
17秒前
阿嘎普莱特完成签到,获得积分10
18秒前
zjw完成签到,获得积分10
18秒前
千秋发布了新的文献求助10
19秒前
刘某完成签到,获得积分10
19秒前
刘某发布了新的文献求助10
22秒前
phase给phase的求助进行了留言
22秒前
andrew发布了新的文献求助10
24秒前
香蕉觅云应助猫姐采纳,获得10
24秒前
25秒前
25秒前
秋qiu完成签到,获得积分10
26秒前
李健应助饱满的靖易采纳,获得10
28秒前
整化学发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
31秒前
32秒前
32秒前
立食劳栖完成签到,获得积分10
32秒前
天天喝咖啡完成签到,获得积分10
33秒前
谋勇兼备发布了新的文献求助10
34秒前
34秒前
愤怒的豌豆完成签到,获得积分10
35秒前
个木发布了新的文献求助10
35秒前
张焕应助整化学采纳,获得10
35秒前
松鼠15111发布了新的文献求助10
37秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866454
求助须知:如何正确求助?哪些是违规求助? 3408880
关于积分的说明 10660474
捐赠科研通 3133006
什么是DOI,文献DOI怎么找? 1727950
邀请新用户注册赠送积分活动 832584
科研通“疑难数据库(出版商)”最低求助积分说明 780316