亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning

蚁群优化算法 运动规划 路径(计算) 初始化 算法 计算机科学 Dijkstra算法 数学优化 机器人 趋同(经济学) Suurballe算法 树遍历 启发式 局部最优 人工智能 最短路径问题 数学 图形 程序设计语言 理论计算机科学 经济 经济增长
作者
Junguo Cui,Lei Wu,Xiaodong Huang,Dengpan Xu,Chao Liu,Wensheng Xiao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:288: 111459-111459 被引量:43
标识
DOI:10.1016/j.knosys.2024.111459
摘要

As a widely used path planning algorithm, the ant colony optimization algorithm (ACO) has evolved into a well-developed method within the realm of optimization algorithms and has been extensively applied across various fields. In this study, a multi-strategy adaptable ant colony optimization (MsAACO) is proposed to alleviate the insufficient and inefficient convergence of ACO, employing four-design improvements. First, a direction-guidance mechanism is proposed to improve the performance of node selection. Second, an adaptive heuristic function is introduced to decrease the length and number of turns of the optimal path solutions. Moreover, the deterministic state transition probability rule was employed to promote the convergence speed of ACO. Finally, nonuniform pheromone initialization was utilized to enhance the ability of ACO to select advantageous regions. Subsequently, the major parameters of the strategies were optimized and their effectiveness was validated. MsAACO was proposed by combining these four strategies with ACO. To verify the advantages of MsAACO, five representative environment models were employed, and comprehensive experiments were conducted by comparing them with existing approaches, including the A* algorithm, variants of ACO, Dijkstra's algorithm, jump point search algorithm, best-first search, breadth-first search, trace algorithm, and other excellent algorithms. The experimental statistical results demonstrate that MsAACO can efficiently generate smoother optimal path-planning solutions with lower length and turn times and improve the convergence efficiency and stability of ACO compared to other algorithms. The generated results of MsAACO verified its superiority in solving the path-planning problem of mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dryang完成签到 ,获得积分10
4秒前
Jessica完成签到,获得积分10
15秒前
26秒前
36秒前
37秒前
cfy123发布了新的文献求助10
42秒前
Jasper应助Una采纳,获得10
57秒前
橘络完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Una发布了新的文献求助10
1分钟前
1分钟前
在水一方应助cfy123采纳,获得10
1分钟前
Una完成签到,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
2分钟前
Yini应助科研通管家采纳,获得60
2分钟前
2分钟前
2分钟前
2分钟前
zzz发布了新的文献求助10
2分钟前
zzz完成签到,获得积分10
2分钟前
2分钟前
huxuehong完成签到 ,获得积分10
3分钟前
3分钟前
fveie发布了新的文献求助10
3分钟前
Virtual应助fveie采纳,获得10
4分钟前
炜大的我应助科研通管家采纳,获得10
4分钟前
CipherSage应助科研通管家采纳,获得10
4分钟前
kuoping完成签到,获得积分0
4分钟前
jinyue完成签到 ,获得积分10
4分钟前
innocence2000完成签到 ,获得积分10
4分钟前
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
Ava应助bacteria采纳,获得10
5分钟前
5分钟前
闻巷雨完成签到 ,获得积分10
5分钟前
钱念波发布了新的文献求助10
5分钟前
爆米花应助钱念波采纳,获得10
5分钟前
我行完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4410224
求助须知:如何正确求助?哪些是违规求助? 3894425
关于积分的说明 12115106
捐赠科研通 3539491
什么是DOI,文献DOI怎么找? 1942264
邀请新用户注册赠送积分活动 982939
科研通“疑难数据库(出版商)”最低求助积分说明 879394