Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning

蚁群优化算法 运动规划 路径(计算) 初始化 算法 计算机科学 Dijkstra算法 数学优化 机器人 趋同(经济学) Suurballe算法 树遍历 启发式 局部最优 人工智能 最短路径问题 数学 图形 理论计算机科学 经济增长 经济 程序设计语言
作者
Junguo Cui,Lei Wu,Xiaodong Huang,Dengpan Xu,Chao Liu,Wensheng Xiao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:288: 111459-111459 被引量:104
标识
DOI:10.1016/j.knosys.2024.111459
摘要

As a widely used path planning algorithm, the ant colony optimization algorithm (ACO) has evolved into a well-developed method within the realm of optimization algorithms and has been extensively applied across various fields. In this study, a multi-strategy adaptable ant colony optimization (MsAACO) is proposed to alleviate the insufficient and inefficient convergence of ACO, employing four-design improvements. First, a direction-guidance mechanism is proposed to improve the performance of node selection. Second, an adaptive heuristic function is introduced to decrease the length and number of turns of the optimal path solutions. Moreover, the deterministic state transition probability rule was employed to promote the convergence speed of ACO. Finally, nonuniform pheromone initialization was utilized to enhance the ability of ACO to select advantageous regions. Subsequently, the major parameters of the strategies were optimized and their effectiveness was validated. MsAACO was proposed by combining these four strategies with ACO. To verify the advantages of MsAACO, five representative environment models were employed, and comprehensive experiments were conducted by comparing them with existing approaches, including the A* algorithm, variants of ACO, Dijkstra's algorithm, jump point search algorithm, best-first search, breadth-first search, trace algorithm, and other excellent algorithms. The experimental statistical results demonstrate that MsAACO can efficiently generate smoother optimal path-planning solutions with lower length and turn times and improve the convergence efficiency and stability of ACO compared to other algorithms. The generated results of MsAACO verified its superiority in solving the path-planning problem of mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助液体剑0932采纳,获得10
刚刚
Tourist应助肖善若采纳,获得10
1秒前
所所应助bai采纳,获得30
1秒前
1秒前
1秒前
小二郎应助李大侠采纳,获得10
2秒前
科目三应助大力凝竹采纳,获得10
3秒前
薄荷花完成签到,获得积分10
3秒前
赘婿应助jj采纳,获得10
3秒前
思源应助mulidexin2021采纳,获得20
3秒前
3秒前
大个应助dff采纳,获得10
4秒前
4秒前
早早发布了新的文献求助10
4秒前
ste11ar完成签到,获得积分10
5秒前
英俊的铭应助邢智超采纳,获得10
5秒前
长情篮球完成签到,获得积分10
6秒前
yvette完成签到,获得积分10
6秒前
lzgy完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
歪歪完成签到,获得积分10
9秒前
10秒前
大聪明发布了新的文献求助10
10秒前
qcwindchasing完成签到,获得积分10
10秒前
久卿晚发布了新的文献求助10
10秒前
3124241344发布了新的文献求助10
11秒前
11秒前
往前走别回头完成签到,获得积分10
12秒前
12秒前
狗东西给狗东西的求助进行了留言
12秒前
早起完成签到,获得积分10
12秒前
FashionBoy应助12345采纳,获得10
13秒前
14秒前
14秒前
余忆发布了新的文献求助10
15秒前
Peng发布了新的文献求助10
15秒前
随遇而安发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318945
求助须知:如何正确求助?哪些是违规求助? 4461004
关于积分的说明 13881267
捐赠科研通 4351635
什么是DOI,文献DOI怎么找? 2390020
邀请新用户注册赠送积分活动 1383976
关于科研通互助平台的介绍 1353561