Integration of Artificial Intelligence, Machine Learning and Deep Learning Techniques in Genomics: Review on Computational Perspectives for NGS Analysis of DNA and RNA Seq Data

计算机科学 人工智能 RNA序列 基因组学 深度学习 数据集成 计算生物学 机器学习 基因组 数据挖掘 生物 基因 遗传学 转录组 基因表达
作者
K Chandrashekar,Vidya Niranjan,Adarsh Vishal,Anagha S Setlur
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (9): 825-844
标识
DOI:10.2174/0115748936284044240108074937
摘要

: In the current state of genomics and biomedical research, the utilization of Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) have emerged as paradigm shifters. While traditional NGS DNA and RNA sequencing analysis pipelines have been sound in decoding genetic information, the sequencing data’s volume and complexity have surged. There is a demand for more efficient and accurate methods of analysis. This has led to dependency on AI/ML and DL approaches. This paper highlights these tool approaches to ease combat the limitations and generate better results, with the help of pipeline automation and integration of these tools into the NGS DNA and RNA-seq pipeline we can improve the quality of research as large data sets can be processed using Deep Learning tools. Automation helps reduce labor-intensive tasks and helps researchers to focus on other frontiers of research. In the traditional pipeline all tasks from quality check to the variant identification in the case of SNP detection take a huge amount of computational time and manually the researcher has to input codes to prevent manual human errors, but with the power of automation, we can run the whole process in comparatively lesser time and smoother as the automated pipeline can run for multiple files instead of the one single file observed in the traditional pipeline. In conclusion, this review paper sheds light on the transformative impact of DL's integration into traditional pipelines and its role in optimizing computational time. Additionally, it highlights the growing importance of AI-driven solutions in advancing genomics research and enabling data-intensive biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不羡江中仙完成签到 ,获得积分10
1秒前
nanmu完成签到 ,获得积分10
1秒前
NexusExplorer应助boom采纳,获得10
2秒前
清脆松完成签到 ,获得积分10
2秒前
叙温雨完成签到,获得积分10
2秒前
斯文败类应助春锅锅采纳,获得10
3秒前
3秒前
红红完成签到 ,获得积分10
3秒前
张薇完成签到,获得积分20
4秒前
行走De太阳花完成签到,获得积分10
5秒前
阝火火完成签到,获得积分10
5秒前
小张完成签到 ,获得积分10
6秒前
7秒前
风秋杨完成签到 ,获得积分10
7秒前
11秒前
秋迎夏发布了新的文献求助10
12秒前
隐形曼青应助boom采纳,获得10
13秒前
而当下的完成签到,获得积分10
13秒前
sevten完成签到,获得积分10
14秒前
阳光的山雁完成签到,获得积分10
15秒前
粗犷的沛容完成签到,获得积分10
17秒前
乏善可陈完成签到,获得积分10
18秒前
1332117762完成签到,获得积分10
20秒前
listener完成签到,获得积分10
21秒前
21秒前
嗯哼应助正直尔白采纳,获得20
22秒前
秋迎夏完成签到,获得积分0
22秒前
程瀚砚完成签到,获得积分10
24秒前
东方琉璃完成签到,获得积分10
27秒前
boom发布了新的文献求助10
27秒前
sci完成签到 ,获得积分10
28秒前
怕孤独的访梦完成签到,获得积分10
29秒前
忧心的白羊完成签到,获得积分10
32秒前
可爱的函函应助烽烽烽采纳,获得10
32秒前
虚幻浩宇完成签到,获得积分10
33秒前
科研小白完成签到,获得积分10
33秒前
Sam完成签到,获得积分10
36秒前
平淡的寄风完成签到,获得积分10
36秒前
郭生完成签到,获得积分10
38秒前
Damia完成签到,获得积分10
39秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418387
捐赠科研通 2354494
什么是DOI,文献DOI怎么找? 1246139
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921