亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of Artificial Intelligence, Machine Learning and Deep Learning Techniques in Genomics: Review on Computational Perspectives for NGS Analysis of DNA and RNA Seq Data

计算机科学 人工智能 RNA序列 基因组学 深度学习 数据集成 计算生物学 机器学习 基因组 数据挖掘 生物 基因 遗传学 转录组 基因表达
作者
K Chandrashekar,Vidya Niranjan,Adarsh Vishal,Anagha S Setlur
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19 (9): 825-844 被引量:6
标识
DOI:10.2174/0115748936284044240108074937
摘要

: In the current state of genomics and biomedical research, the utilization of Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) have emerged as paradigm shifters. While traditional NGS DNA and RNA sequencing analysis pipelines have been sound in decoding genetic information, the sequencing data’s volume and complexity have surged. There is a demand for more efficient and accurate methods of analysis. This has led to dependency on AI/ML and DL approaches. This paper highlights these tool approaches to ease combat the limitations and generate better results, with the help of pipeline automation and integration of these tools into the NGS DNA and RNA-seq pipeline we can improve the quality of research as large data sets can be processed using Deep Learning tools. Automation helps reduce labor-intensive tasks and helps researchers to focus on other frontiers of research. In the traditional pipeline all tasks from quality check to the variant identification in the case of SNP detection take a huge amount of computational time and manually the researcher has to input codes to prevent manual human errors, but with the power of automation, we can run the whole process in comparatively lesser time and smoother as the automated pipeline can run for multiple files instead of the one single file observed in the traditional pipeline. In conclusion, this review paper sheds light on the transformative impact of DL's integration into traditional pipelines and its role in optimizing computational time. Additionally, it highlights the growing importance of AI-driven solutions in advancing genomics research and enabling data-intensive biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
桐桐应助科研通管家采纳,获得10
29秒前
44秒前
1分钟前
点心完成签到,获得积分10
1分钟前
1分钟前
jiaobu发布了新的文献求助30
1分钟前
zxp发布了新的文献求助40
1分钟前
小马甲应助jiaobu采纳,获得10
2分钟前
雷九万班发布了新的文献求助50
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Owen应助peninsula采纳,获得10
3分钟前
jqliu完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
peninsula发布了新的文献求助10
3分钟前
斯文败类应助yyy采纳,获得10
4分钟前
田様应助peninsula采纳,获得10
4分钟前
小二郎应助科研通管家采纳,获得30
4分钟前
4分钟前
Ryoman完成签到,获得积分10
4分钟前
4分钟前
yyy发布了新的文献求助10
4分钟前
Owen应助JY采纳,获得10
5分钟前
5分钟前
5分钟前
JY发布了新的文献求助10
5分钟前
今后应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助david采纳,获得10
6分钟前
帅气惜霜完成签到 ,获得积分10
6分钟前
xiaolang2004完成签到,获得积分10
6分钟前
6分钟前
jiaobu发布了新的文献求助10
7分钟前
annnnnnd完成签到 ,获得积分10
7分钟前
赘婿应助jiaobu采纳,获得10
7分钟前
eccentric完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340629
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762563