Disorder-specific versus transdiagnostic cognitive mechanisms in anxiety and depression: Machine-learning-based prediction of symptom severity

焦虑 认知 心理学 期望理论 临床心理学 研究领域标准 背景(考古学) 过度拟合 经验抽样法 精神科 人工智能 计算机科学 人工神经网络 社会心理学 生物 古生物学
作者
Thalia Richter,Shahar Stahi,Gal Mirovsky,Hagit Hel‐Or,Hadas Okon‐Singer
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:354: 473-482 被引量:4
标识
DOI:10.1016/j.jad.2024.03.035
摘要

Psychiatric evaluation of anxiety and depression is currently based on self-reported symptoms and their classification into discrete disorders. Yet the substantial overlap between these disorders as well as their within-disorder heterogeneity may contribute to the mediocre success rates of treatments. The proposed research examines a new framework for diagnosis that is based on alterations in underlying cognitive mechanisms. In line with the Research Domain Criteria (RDoC) approach, the current study directly compares disorder-specific and transdiagnostic cognitive patterns in predicting the severity of anxiety and depression symptoms. The sample included 237 individuals exhibiting differing levels of anxiety and depression symptoms, as measured by the STAI-T and BDI-II. Random Forest regressors were used to analyze their performance on a battery of six computerized cognitive-behavioral tests targeting selective and spatial attention, expectancy, interpretation, memory, and cognitive control biases. Unique anxiety-specific biases were found, as well as shared anxious-depressed bias patterns. These cognitive biases exhibited relatively high fitting rates when predicting symptom severity (questionnaire scores common range 0–60, MAE = 6.03, RMSE = 7.53). Interpretation and expectancy biases exhibited the highest association with symptoms, above all other individual biases. Although internal validation methods were applied, models may suffer from potential overfitting due to sample size limitations. In the context of the ongoing dispute regarding symptom-centered versus transdiagnostic approaches, the current study provides a unique comparison of these two views, yielding a novel intermediate approach. The results support the use of mechanism-based dimensional diagnosis for adding precision and objectivity to future psychiatric evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜小时完成签到 ,获得积分10
1秒前
Fly完成签到 ,获得积分10
5秒前
6秒前
叶雨思空完成签到 ,获得积分10
7秒前
就好完成签到 ,获得积分10
8秒前
73Jennie123完成签到,获得积分10
11秒前
苗广山完成签到,获得积分10
11秒前
西瓜椰奶发布了新的文献求助10
12秒前
nulinuli完成签到 ,获得积分10
12秒前
Finch11完成签到 ,获得积分10
13秒前
深情安青应助zsj3787采纳,获得10
14秒前
故酒应助Benhnhk21采纳,获得10
15秒前
15秒前
慕青应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
缥缈纲应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
liangguangyuan完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
淡然冬灵应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
natsu401完成签到 ,获得积分10
16秒前
梓歆完成签到 ,获得积分10
17秒前
机灵水卉完成签到 ,获得积分10
18秒前
言非离完成签到 ,获得积分10
19秒前
20秒前
陈豆豆完成签到 ,获得积分10
21秒前
张成完成签到 ,获得积分10
21秒前
飞哥完成签到 ,获得积分10
24秒前
25秒前
悦耳玲完成签到 ,获得积分10
26秒前
不知道完成签到 ,获得积分10
29秒前
江江江江江江江江完成签到,获得积分10
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346582
关于积分的说明 10329956
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726