Active learning molecular dynamics-assisted insights into ultralow thermal conductivity of two-dimensional covalent organic frameworks

声子 热导率 分子动力学 材料科学 共价有机骨架 化学物理 凝聚态物理 热力学 计算化学 物理 化学 复合材料 多孔性
作者
Zhiqiang Li,Haoyu Dong,Jian Wang,Linhua Liu,Jia‐Yue Yang
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:225: 125404-125404 被引量:13
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125404
摘要

Two-dimensional covalent organic frameworks (2D COFs) are novel materials with high porosities and large surface areas that are highly sought after for separation technologies and energy storage. The exothermic issues of gas adsorption and storage processes need to be emphasized, which requires an in-depth understanding of heat transfer mechanisms. Limited by experimental conditions, imprecision of empirical potentials and large computational cost, the thermal transport mechanism inside 2D COFs still remains elusive. To this end, a neuro-evolution potential (NEP) was developed to investigate the thermal properties of representative 2D COFs, e.g., COF-5. The trained NEP achieves a total energy accuracy of ∼0.785 meV/atom and a force accuracy of ∼69.43 meV/Å, respectively. As expected, the NEP-driven MD simulations display remarkable consistency with ab initio MD (AIMD) simulations in terms of structural and vibrational properties. Based on homogeneous non-equilibrium molecular dynamics (HNEMD) and equilibrium molecular dynamics (EMD) simulations, the in-plane and cross-plane thermal conductivity of monolayer COF-5 is estimated to be 1.12 ± 0.08 W/m·K and 0.50 ± 0.04 W/m·K, respectively. The spectral decomposition method further quantifies the contribution of different phonon modes to thermal conductivity, highlighting the important contribution of low-frequency (below 5 THz) phonons to thermal conductivity. It finds that the ultralow thermal conductivity origins from energy localization on the benzene ring, vibration mismatch and the short mean free path. This work provides fundamental workflow for evaluating the thermal properties of 2D COFs, whose findings contribute to the thermal design of related devices, e.g., off-gas treatment, chemical catalysis, and solar seawater desalination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助可爱草丛采纳,获得10
1秒前
1秒前
DFMDFMDFM发布了新的文献求助80
2秒前
3秒前
deng完成签到,获得积分10
3秒前
2026毕业啦发布了新的文献求助10
4秒前
ww完成签到,获得积分20
4秒前
LILI发布了新的文献求助10
4秒前
乎乎完成签到,获得积分10
6秒前
情怀应助洁净问儿采纳,获得10
6秒前
6秒前
LX完成签到,获得积分10
7秒前
7秒前
Xuz完成签到 ,获得积分10
7秒前
ding应助reegdsgsfd采纳,获得10
7秒前
deng发布了新的文献求助10
7秒前
科研通AI6应助Oracle采纳,获得10
7秒前
果果完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
星辰大海应助鳗鱼寇采纳,获得10
9秒前
gugu完成签到,获得积分10
9秒前
9秒前
10秒前
Lucas应助zzzzg采纳,获得30
10秒前
牟英杰发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
Gyaz完成签到,获得积分20
12秒前
12秒前
兜有米发布了新的文献求助30
13秒前
13秒前
gugu发布了新的文献求助10
13秒前
奶桃七七发布了新的文献求助10
13秒前
13秒前
zyyyyyyyy完成签到 ,获得积分10
14秒前
wbn1212发布了新的文献求助10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132497
求助须知:如何正确求助?哪些是违规求助? 4333918
关于积分的说明 13502513
捐赠科研通 4170952
什么是DOI,文献DOI怎么找? 2286755
邀请新用户注册赠送积分活动 1287645
关于科研通互助平台的介绍 1228540