Examining the Differential Effectiveness of Fear Appeals in Information Security Management Using Two-Stage Meta-Analysis

结构方程建模 恐惧上诉 现存分类群 实证研究 心理学 荟萃分析 应对(心理学) 计算机科学 社会心理学 认知心理学 认识论 生物 进化生物学 精神科 机器学习 内科学 哲学 医学
作者
Paul Benjamin Lowry,Gregory D. Moody,Srikanth Parameswaran,Nicholas James Brown
出处
期刊:Journal of Management Information Systems [Informa]
卷期号:40 (4): 1099-1138 被引量:17
标识
DOI:10.1080/07421222.2023.2267318
摘要

Most of the information security management research involving fear appeals is guided by either protection motivation theory or the extended parallel processing model. Over time, extant research has extended these theories, as well as their derivative theories, in a variety of ways, leading to several theoretical and empirical inconsistencies. The large body of fragmented, and sometimes conflicting, research has muddied the broader understanding of what drives protection- and defensive motivation. We provide guidance to the security discourse by offering the first study in the literature to employ two-stage meta-analytic structural equation modeling (TSSEM), which combines covariance-based structural equation modeling and meta-analysis. Information systems (IS) researchers have traditionally used meta-analysis for structural equation modeling for such purposes—an approach that has several serious statistical flaws. Using 341 systematically selected empirical security articles (representing 383 unique studies) and TSSEM, we pool a large series of five datasets to test six models, from which we examine the effects of constructs and paths in the security fear-appeals literature. We compare and test six versions of models inspired by issues in the broader fear-appeals literature. We confirm the importance of both the threat- and coping-appraisal processes; establish the central role of fear and that it has greater importance than threat; show that efficacy is a stronger predictor of protection motivation than is threat; demonstrate that response costs as currently measured are ineffective but that maladaptive rewards have a strong negative effect on protection motivation and a positive effect on defensive motivation; and provide evidence that dual models of danger control and fear control should be used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达依凝发布了新的文献求助10
刚刚
骆云发布了新的文献求助10
1秒前
科研通AI6.1应助棉花糖采纳,获得30
1秒前
LL完成签到,获得积分10
1秒前
戴苑竹完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助10
2秒前
Vi完成签到,获得积分20
2秒前
2秒前
蓝天发布了新的文献求助10
2秒前
3秒前
不是省油的灯完成签到,获得积分10
3秒前
ddog完成签到,获得积分10
3秒前
冷却水发布了新的文献求助10
3秒前
3秒前
lll111完成签到 ,获得积分10
3秒前
村口烫头祁师傅完成签到,获得积分10
4秒前
xx发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
羊屎蛋完成签到 ,获得积分10
5秒前
熏熏发布了新的文献求助10
5秒前
LT完成签到,获得积分10
5秒前
5秒前
5秒前
就好完成签到 ,获得积分10
6秒前
所所应助卖萌的秋田采纳,获得10
6秒前
李慧完成签到,获得积分20
6秒前
matty完成签到,获得积分20
6秒前
勤奋的擎苍完成签到 ,获得积分10
6秒前
lu2025发布了新的文献求助10
7秒前
Zhu发布了新的文献求助10
8秒前
JJS发布了新的文献求助10
8秒前
寒塘渡鹤影完成签到,获得积分10
9秒前
榛蘑大王发布了新的文献求助10
10秒前
10秒前
小蘑菇应助mynuongga采纳,获得10
10秒前
壮观的戒指关注了科研通微信公众号
10秒前
科研通AI6.1应助matty采纳,获得10
10秒前
天天喝咖啡完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774094
求助须知:如何正确求助?哪些是违规求助? 5615909
关于积分的说明 15434577
捐赠科研通 4906555
什么是DOI,文献DOI怎么找? 2640285
邀请新用户注册赠送积分活动 1588108
关于科研通互助平台的介绍 1543157