High Throughput FPGA-Based Object Detection via Algorithm-Hardware Co-Design

计算机科学 现场可编程门阵列 吞吐量 计算机硬件 目标检测 嵌入式系统 对象(语法) 并行计算 算法 计算机体系结构 人工智能 模式识别(心理学) 操作系统 无线
作者
Anupreetham Anupreetham,Mohamed Ibrahim,Mathew Hall,Andrew Boutros,Ajay Kuzhively,Abinash Mohanty,Eriko Nurvitadhi,Vaughn Betz,Yu Cao,Jae-sun Seo
出处
期刊:ACM Transactions on Reconfigurable Technology and Systems [Association for Computing Machinery]
卷期号:17 (1): 1-20 被引量:4
标识
DOI:10.1145/3634919
摘要

Object detection and classification is a key task in many computer vision applications such as smart surveillance and autonomous vehicles. Recent advances in deep learning have significantly improved the quality of results achieved by these systems, making them more accurate and reliable in complex environments. Modern object detection systems make use of lightweight convolutional neural networks (CNNs) for feature extraction, coupled with single-shot multi-box detectors (SSDs) that generate bounding boxes around the identified objects along with their classification confidence scores. Subsequently, a non-maximum suppression (NMS) module removes any redundant detection boxes from the final output. Typical NMS algorithms must wait for all box predictions to be generated by the SSD-based feature extractor before processing them. This sequential dependency between box predictions and NMS results in a significant latency overhead and degrades the overall system throughput, even if a high-performance CNN accelerator is used for the SSD feature extraction component. In this paper, we present a novel pipelined NMS algorithm that eliminates this sequential dependency and associated NMS latency overhead. We then use our novel NMS algorithm to implement an end-to-end fully pipelined FPGA system for low-latency SSD-MobileNet-V1 object detection. Our system, implemented on an Intel Stratix 10 FPGA, runs at 400 MHz and achieves a throughput of 2,167 frames per second with an end-to-end batch-1 latency of 2.13 ms. Our system achieves 5.3× higher throughput and 5× lower latency compared to the best prior FPGA-based solution with comparable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tian发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
少少少发布了新的文献求助10
1秒前
情怀应助wulaliu采纳,获得10
3秒前
hha完成签到,获得积分10
3秒前
4秒前
banana发布了新的文献求助10
4秒前
5秒前
小马甲应助yyf采纳,获得10
5秒前
黑森林发布了新的文献求助10
6秒前
6秒前
Catherine发布了新的文献求助10
7秒前
7秒前
小小怪完成签到,获得积分20
8秒前
8秒前
小竹笋完成签到,获得积分10
8秒前
球球是个小趴菜完成签到,获得积分10
9秒前
9秒前
alexisgood发布了新的文献求助10
10秒前
王耀完成签到,获得积分10
11秒前
周周发布了新的文献求助10
11秒前
GET发布了新的文献求助30
11秒前
Catherine完成签到,获得积分10
12秒前
清爽芷天完成签到 ,获得积分20
12秒前
12秒前
Natforever完成签到,获得积分10
13秒前
烟花应助允柠采纳,获得10
13秒前
yzz完成签到,获得积分20
14秒前
14秒前
renmiaozhen发布了新的文献求助10
15秒前
巷子里的猫完成签到 ,获得积分20
15秒前
从容的完成签到 ,获得积分10
16秒前
科研通AI2S应助爱吃酸辣粉采纳,获得10
16秒前
xuxu发布了新的文献求助10
16秒前
小王发布了新的文献求助10
16秒前
wulaliu完成签到,获得积分20
16秒前
脑洞疼应助XMUh采纳,获得10
17秒前
17秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3860580
求助须知:如何正确求助?哪些是违规求助? 3402874
关于积分的说明 10631969
捐赠科研通 3125836
什么是DOI,文献DOI怎么找? 1723689
邀请新用户注册赠送积分活动 830108
科研通“疑难数据库(出版商)”最低求助积分说明 778814