Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation

生物 肾髓质 内皮 内皮干细胞 平衡 细胞生物学 内分泌学 内科学 生物化学 医学 体外
作者
Sébastien J. Dumas,Elda Meta,Mila Borri,Jermaine Goveia,Kateřina Rohlenová,Nadine V. Conchinha,Kim D. Falkenberg,Laure-Anne Teuwen,Laura de Rooij,Joanna Kalucka,Rongyuan Chen,Shawez Khan,Federico Taverna,Weisi Lu,Maciej Parys,Carla De Legher,Stefan Vinckier,Tobias K. Karakach,Luc Schoonjans,Lin Lin,Lars Bolund,Mieke Dewerchin,Guy Eelen,Ton J. Rabelink,Xuri Li,Yonglun Luo,Peter Carmeliet
出处
期刊:Journal of The American Society of Nephrology 卷期号:31 (1): 118-138 被引量:104
标识
DOI:10.1681/asn.2019080832
摘要

Significance Statement The specialized vessels comprising the renal vasculature are characterized by highly differentiated renal endothelial cell types, but this heterogeneity has been poorly inventoried. Using single-cell RNA sequencing, the authors developed a high-resolution atlas of mouse renal endothelial cells. They also investigated how medullary renal endothelial cells adapt to a switch from diuresis to antidiuresis. This study describes the molecular and metabolic adaptation of medullary renal endothelial cells to dehydration, and uncovers a role for mitochondrial oxidative phosphorylation in hyperosmolarity conditions to allow for urine concentration. The authors’ atlas of mouse renal endothelial cells provides a resource for future studies, and their findings may provide insights into cardiometabolic or kidney diseases involving hyperosmolarity and dehydration, in which urine concentration capacity is perturbed. Background Renal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown. Methods We inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing >40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phosphorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo . Results We identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting extensive heterogeneity of these cells between and within the cortex, glomeruli, and medulla. In response to dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes involved in the hypoxia response, glycolysis, and—surprisingly—oxidative phosphorylation. Endothelial cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine concentration during dehydration. Conclusions This study provides a high-resolution atlas of the renal endothelium and highlights extensive renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hkh发布了新的文献求助10
1秒前
低调点行吗完成签到,获得积分10
5秒前
小俞完成签到,获得积分10
6秒前
7秒前
天道酬勤完成签到,获得积分20
7秒前
sowhat完成签到 ,获得积分10
7秒前
MrDJ完成签到,获得积分10
8秒前
秘密完成签到,获得积分10
8秒前
甜甜圈完成签到,获得积分10
9秒前
10秒前
秋雪瑶应助hkh采纳,获得10
11秒前
12秒前
phoenix001完成签到,获得积分10
12秒前
13秒前
科研小郭完成签到,获得积分10
14秒前
阿佑发布了新的文献求助10
15秒前
16秒前
今天也要好好学习完成签到,获得积分10
16秒前
17秒前
程风破浪发布了新的文献求助10
18秒前
蚕宝宝完成签到,获得积分10
20秒前
mjicm发布了新的文献求助20
21秒前
蜗牛fei完成签到,获得积分10
21秒前
耶耶完成签到 ,获得积分10
21秒前
byron完成签到,获得积分10
22秒前
老张完成签到,获得积分10
22秒前
24秒前
自然亦竹完成签到,获得积分10
24秒前
xulei完成签到,获得积分10
26秒前
lxh完成签到 ,获得积分10
29秒前
31秒前
阿佑完成签到,获得积分20
32秒前
自信小丛完成签到 ,获得积分10
34秒前
星辰大海应助科研小菜采纳,获得30
35秒前
wang5cl完成签到,获得积分10
35秒前
杳子尧发布了新的文献求助10
38秒前
岁月旧曾谙完成签到,获得积分10
38秒前
元友容完成签到 ,获得积分10
39秒前
chem完成签到,获得积分10
40秒前
董董完成签到,获得积分10
42秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2407437
求助须知:如何正确求助?哪些是违规求助? 2104249
关于积分的说明 5311028
捐赠科研通 1831822
什么是DOI,文献DOI怎么找? 912750
版权声明 560691
科研通“疑难数据库(出版商)”最低求助积分说明 488012