CNN-Enhanced Graph Convolutional Network With Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 人工智能 像素 卷积神经网络 高光谱成像 图形 预处理器 特征(语言学) 理论计算机科学 语言学 哲学
作者
Qichao Liu,Liang Xiao,Jingxiang Yang,Zhihui Wei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (10): 8657-8671 被引量:282
标识
DOI:10.1109/tgrs.2020.3037361
摘要

Recently, the graph convolutional network (GCN) has drawn increasing attention in the hyperspectral image (HSI) classification. Compared with the convolutional neural network (CNN) with fixed square kernels, GCN can explicitly utilize the correlation between adjacent land covers and conduct flexible convolution on arbitrarily irregular image regions; hence, the HSI spatial contextual structure can be better modeled. However, to reduce the computational complexity and promote the semantic structure learning of land covers, GCN usually works on superpixel-based nodes rather than pixel-based nodes; thus, the pixel-level spectral–spatial features cannot be captured. To fully leverage the advantages of the CNN and GCN, we propose a heterogeneous deep network called CNN-enhanced GCN (CEGCN), in which CNN and GCN branches perform feature learning on small-scale regular regions and large-scale irregular regions, and generate complementary spectral–spatial features at pixel and superpixel levels, respectively. To alleviate the structural incompatibility of the data representation between the Euclidean data-oriented CNN and non-Euclidean data-oriented GCN, we propose the graph encoder and decoder to propagate features between image pixels and graph nodes, thus enabling the CNN and GCN to collaborate in a single network. In contrast to other GCN-based methods that encode HSI into a graph during preprocessing, we integrate the graph encoding process into the network and learn edge weights from training data, which can promote the node feature learning and make the graph more adaptive to HSI content. Extensive experiments on three data sets demonstrate that the proposed CEGCN is both qualitatively and quantitatively competitive compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
tianxiong完成签到 ,获得积分10
6秒前
欧皇完成签到,获得积分20
7秒前
lucky珠完成签到 ,获得积分10
7秒前
xiaojingbao发布了新的文献求助10
8秒前
个性惜蕊完成签到,获得积分10
9秒前
欧皇发布了新的文献求助30
9秒前
10秒前
xcwy完成签到,获得积分10
12秒前
Pauline完成签到 ,获得积分10
13秒前
yin完成签到,获得积分10
16秒前
李木头完成签到,获得积分10
17秒前
xiha西希完成签到,获得积分10
19秒前
荔枝完成签到 ,获得积分10
21秒前
0713完成签到,获得积分10
21秒前
高高的从波完成签到,获得积分10
24秒前
小高同学完成签到,获得积分10
26秒前
彭于晏应助罗先斗采纳,获得10
27秒前
QQLL完成签到,获得积分10
29秒前
巴豆有点妖完成签到 ,获得积分10
30秒前
Gengsai完成签到,获得积分10
33秒前
隐形白开水完成签到,获得积分10
34秒前
fy完成签到,获得积分10
38秒前
韦老虎完成签到,获得积分10
39秒前
yellow完成签到 ,获得积分10
40秒前
二三三完成签到 ,获得积分10
40秒前
cl完成签到,获得积分10
41秒前
共享精神应助RaccoonTao采纳,获得30
46秒前
mc1220完成签到,获得积分10
47秒前
51秒前
周星星完成签到,获得积分10
53秒前
lin举报斜阳正浓求助涉嫌违规
56秒前
xxf1002完成签到 ,获得积分10
57秒前
罗先斗完成签到,获得积分10
57秒前
执着夏山完成签到,获得积分10
1分钟前
打打应助如梦采纳,获得10
1分钟前
我爱Chem完成签到 ,获得积分10
1分钟前
牛肉面完成签到 ,获得积分10
1分钟前
缺粥完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798557
求助须知:如何正确求助?哪些是违规求助? 3344104
关于积分的说明 10318553
捐赠科研通 3060679
什么是DOI,文献DOI怎么找? 1679759
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353