已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CNN-Enhanced Graph Convolutional Network With Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 人工智能 像素 卷积神经网络 高光谱成像 图形 预处理器 特征(语言学) 理论计算机科学 语言学 哲学
作者
Qichao Liu,Liang Xiao,Jingxiang Yang,Zhihui Wei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (10): 8657-8671 被引量:308
标识
DOI:10.1109/tgrs.2020.3037361
摘要

Recently, the graph convolutional network (GCN) has drawn increasing attention in the hyperspectral image (HSI) classification. Compared with the convolutional neural network (CNN) with fixed square kernels, GCN can explicitly utilize the correlation between adjacent land covers and conduct flexible convolution on arbitrarily irregular image regions; hence, the HSI spatial contextual structure can be better modeled. However, to reduce the computational complexity and promote the semantic structure learning of land covers, GCN usually works on superpixel-based nodes rather than pixel-based nodes; thus, the pixel-level spectral–spatial features cannot be captured. To fully leverage the advantages of the CNN and GCN, we propose a heterogeneous deep network called CNN-enhanced GCN (CEGCN), in which CNN and GCN branches perform feature learning on small-scale regular regions and large-scale irregular regions, and generate complementary spectral–spatial features at pixel and superpixel levels, respectively. To alleviate the structural incompatibility of the data representation between the Euclidean data-oriented CNN and non-Euclidean data-oriented GCN, we propose the graph encoder and decoder to propagate features between image pixels and graph nodes, thus enabling the CNN and GCN to collaborate in a single network. In contrast to other GCN-based methods that encode HSI into a graph during preprocessing, we integrate the graph encoding process into the network and learn edge weights from training data, which can promote the node feature learning and make the graph more adaptive to HSI content. Extensive experiments on three data sets demonstrate that the proposed CEGCN is both qualitatively and quantitatively competitive compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子完成签到,获得积分10
1秒前
1秒前
lalalala完成签到,获得积分20
2秒前
王紫荆发布了新的文献求助10
2秒前
十三号失眠完成签到 ,获得积分10
4秒前
Planck发布了新的文献求助10
5秒前
科研通AI5应助无奈灵枫采纳,获得10
6秒前
挽秋完成签到,获得积分10
6秒前
1l完成签到,获得积分10
6秒前
6秒前
7秒前
Owen应助LY9012采纳,获得10
8秒前
含蓄凡柔发布了新的文献求助10
9秒前
尼古拉斯狗蛋应助执着瓜6采纳,获得10
9秒前
65A97a发布了新的文献求助30
12秒前
不配.应助安详的觅风采纳,获得150
12秒前
香蕉觅云应助Turbo采纳,获得10
12秒前
zky17715002完成签到,获得积分10
16秒前
汉堡包应助sun采纳,获得10
17秒前
YEM完成签到 ,获得积分10
17秒前
传奇3应助xinjie采纳,获得10
18秒前
NexusExplorer应助张二十八采纳,获得10
22秒前
Jasper应助李仟亿采纳,获得10
22秒前
岂有此李完成签到,获得积分10
23秒前
26秒前
27秒前
王富贵完成签到 ,获得积分10
27秒前
健忘捕完成签到 ,获得积分10
28秒前
29秒前
程小柒完成签到 ,获得积分10
30秒前
无语发布了新的文献求助10
34秒前
生动烙完成签到,获得积分10
35秒前
Planck关注了科研通微信公众号
36秒前
呆二龙完成签到 ,获得积分10
36秒前
上官若男应助xaoi采纳,获得10
37秒前
爆米花应助Su采纳,获得10
39秒前
39秒前
under完成签到 ,获得积分10
42秒前
李仟亿完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868878
求助须知:如何正确求助?哪些是违规求助? 4160195
关于积分的说明 12900885
捐赠科研通 3914621
什么是DOI,文献DOI怎么找? 2149991
邀请新用户注册赠送积分活动 1168431
关于科研通互助平台的介绍 1070904