Classification and Identification of Tomato Leaf Disease Using Deep Neural Network

计算机科学 鉴定(生物学) 人工智能 领域(数学) 上下文图像分类 人工神经网络 疾病 农业 植物病害 生产力 机器学习 模式识别(心理学) 图像(数学) 数学 生物技术 地理 医学 生物 植物 考古 宏观经济学 病理 纯数学 经济
作者
Ayesha Batool,Syeda Basmah Hyder,Aymen Rahim,Namra Waheed,Muhammad Adeel Asghar,Fawad Fawad
标识
DOI:10.1109/iceet48479.2020.9048207
摘要

Agricultural productivity is something on which the economy highly depends. In addition to this, plant diseases and pests are a major problem in the agricultural sector. Their detection at the initial stage is required to get rid of all the diseases as quickly as possible and to save ourselves from the destruction of crops. Different kinds of pesticides have been used to save the plants from diseases. Even after all these safety measures, it is observed that still, the disease keeps spreading in the field. Why is it SO? The problem here arises that in many cases we are not sure of the type of disease and so a wrong pesticide might have been used instead. Hence, it all goes in vain. This means the classification of disease is as important as the detection. In this paper, an advanced classification model was proposed which detects and classifies tomato leaf disease. A training dataset consisting of 450 images is used and image features are extracted using several models and kNN is applied for the classification. Classification accuracy of 76.1% is achieved using AlexNet model and it came out to be the highest in comparison to other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助arniu2008采纳,获得10
1秒前
斯文败类应助Huay采纳,获得10
1秒前
小马甲应助二浪采纳,获得10
1秒前
徐向成发布了新的文献求助10
2秒前
3秒前
lanxinyue应助凯nb1采纳,获得10
4秒前
5秒前
6秒前
DrShiva发布了新的文献求助10
8秒前
10秒前
小福完成签到 ,获得积分10
11秒前
香蕉觅云应助wulala采纳,获得10
13秒前
木仓完成签到,获得积分10
15秒前
Huay发布了新的文献求助10
15秒前
dodo完成签到 ,获得积分10
16秒前
捉迷藏完成签到,获得积分0
16秒前
斯文败类应助否定的否定采纳,获得10
16秒前
大模型应助fanghua采纳,获得10
17秒前
mary完成签到,获得积分10
18秒前
活着完成签到 ,获得积分10
19秒前
席涑发布了新的文献求助10
20秒前
泽宇完成签到,获得积分20
24秒前
24秒前
记忆力超人完成签到,获得积分10
25秒前
孟相浩完成签到,获得积分10
28秒前
29秒前
ACh3完成签到 ,获得积分10
31秒前
汉堡包应助苏州小北采纳,获得10
32秒前
我是老大应助啦啦啦采纳,获得10
32秒前
李爱国应助纯真的凝安采纳,获得10
35秒前
35秒前
songmt1988完成签到,获得积分10
36秒前
烟花应助阿七采纳,获得10
37秒前
lucky完成签到,获得积分10
38秒前
38秒前
38秒前
ding应助平淡南霜采纳,获得10
39秒前
俊逸随阴完成签到 ,获得积分20
39秒前
40秒前
toro0706关注了科研通微信公众号
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5844240
求助须知:如何正确求助?哪些是违规求助? 6188196
关于积分的说明 15613700
捐赠科研通 4960994
什么是DOI,文献DOI怎么找? 2674616
邀请新用户注册赠送积分活动 1619472
关于科研通互助平台的介绍 1574742