Machine learning for clinical decision support in infectious diseases: a narrative review of current applications

抗菌管理 临床决策支持系统 梅德林 叙述性评论 重症监护医学 医学 败血症 养生 决策支持系统 机器学习 抗生素耐药性 人工智能 计算机科学 抗生素 内科学 法学 微生物学 生物 政治学
作者
Nathan Peiffer‐Smadja,Timothy M. Rawson,Raheelah Ahmad,Albert Buchard,Pantelis Georgiou,François-Xavier Lescure,Gabriel Birgand,Alison Holmes
出处
期刊:Clinical Microbiology and Infection [Elsevier BV]
卷期号:26 (5): 584-595 被引量:367
标识
DOI:10.1016/j.cmi.2019.09.009
摘要

Abstract Background Machine learning (ML) is a growing field in medicine. This narrative review describes the current body of literature on ML for clinical decision support in infectious diseases (ID). Objectives We aim to inform clinicians about the use of ML for diagnosis, classification, outcome prediction and antimicrobial management in ID. Sources References for this review were identified through searches of MEDLINE/PubMed, EMBASE, Google Scholar, biorXiv, ACM Digital Library, arXiV and IEEE Xplore Digital Library up to July 2019. Content We found 60 unique ML-clinical decision support systems (ML-CDSS) aiming to assist ID clinicians. Overall, 37 (62%) focused on bacterial infections, 10 (17%) on viral infections, nine (15%) on tuberculosis and four (7%) on any kind of infection. Among them, 20 (33%) addressed the diagnosis of infection, 18 (30%) the prediction, early detection or stratification of sepsis, 13 (22%) the prediction of treatment response, four (7%) the prediction of antibiotic resistance, three (5%) the choice of antibiotic regimen and two (3%) the choice of a combination antiretroviral therapy. The ML-CDSS were developed for intensive care units (n = 24, 40%), ID consultation (n = 15, 25%), medical or surgical wards (n = 13, 20%), emergency department (n = 4, 7%), primary care (n = 3, 5%) and antimicrobial stewardship (n = 1, 2%). Fifty-three ML-CDSS (88%) were developed using data from high-income countries and seven (12%) with data from low- and middle-income countries (LMIC). The evaluation of ML-CDSS was limited to measures of performance (e.g. sensitivity, specificity) for 57 ML-CDSS (95%) and included data in clinical practice for three (5%). Implications Considering comprehensive patient data from socioeconomically diverse healthcare settings, including primary care and LMICs, may improve the ability of ML-CDSS to suggest decisions adapted to various clinical contexts. Currents gaps identified in the evaluation of ML-CDSS must also be addressed in order to know the potential impact of such tools for clinicians and patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子李完成签到,获得积分10
刚刚
老张完成签到,获得积分10
刚刚
刚刚
小雨o0完成签到,获得积分20
1秒前
1秒前
王博雅发布了新的文献求助10
1秒前
Iris完成签到 ,获得积分10
1秒前
田心雨完成签到 ,获得积分10
1秒前
清沐完成签到 ,获得积分10
1秒前
MOhy发布了新的文献求助20
2秒前
444发布了新的文献求助10
2秒前
卡卡光波完成签到,获得积分10
3秒前
小雨o0发布了新的文献求助10
3秒前
falcon完成签到,获得积分10
3秒前
爱吃饼干的土拨鼠完成签到,获得积分10
3秒前
你还睡得着完成签到 ,获得积分10
3秒前
拼搏的飞薇完成签到,获得积分10
3秒前
白枫发布了新的文献求助10
4秒前
4秒前
隐形曼青应助a焦采纳,获得10
4秒前
虚心醉蝶完成签到 ,获得积分10
4秒前
Hyde完成签到,获得积分10
5秒前
哈先森完成签到,获得积分10
5秒前
清脆臻发布了新的文献求助20
5秒前
Niko完成签到,获得积分10
5秒前
英俊的铭应助无尘采纳,获得10
5秒前
杨合霖发布了新的文献求助10
5秒前
Liyipu发布了新的文献求助10
6秒前
封似狮完成签到,获得积分10
6秒前
跳跳妈妈完成签到,获得积分10
6秒前
慕容铭完成签到,获得积分10
6秒前
飲料大隊長完成签到,获得积分10
6秒前
7秒前
h41692011完成签到 ,获得积分10
8秒前
整齐泥猴桃完成签到,获得积分10
8秒前
文艺的白开水完成签到,获得积分10
8秒前
安仔完成签到,获得积分10
8秒前
8秒前
从容的雪碧完成签到,获得积分10
9秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788560
求助须知:如何正确求助?哪些是违规求助? 3333813
关于积分的说明 10264224
捐赠科研通 3049806
什么是DOI,文献DOI怎么找? 1673705
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760535