Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework

云制造 云计算 计算机科学 排名(信息检索) 背景(考古学) 制造执行系统 制造工程 制造业 钥匙(锁) 计算机集成制造 工业工程 工程类 机器学习 古生物学 操作系统 生物 法学 计算机安全 政治学
作者
Alessandro Simeone,Yunfeng Zeng,Alessandra Caggiano
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:112 (3-4): 1035-1050 被引量:25
标识
DOI:10.1007/s00170-020-06389-1
摘要

Abstract Cloud manufacturing represents a valuable tool to enable wide sharing of manufacturing services and solutions by connecting suppliers and customers in large-scale manufacturing networks through a cloud platform. In this context, with increasing manufacturing network size at global scale, the elevated number of manufacturing solutions offered via cloud platform to connected customers can increase the complexity of decision-making, resulting in poor user experience from a customer perspective. To tackle this issue, in this paper, an intelligent decision-making support tool based on a manufacturing service recommendation system (RS) is designed and developed to provide for tailored manufacturing solution recommendation to customers in a cloud manufacturing system. A machine learning procedure based on neural networks for data regression is employed to process historical data on user manufacturing solution preferences and to carry out the automatic extraction of key features from incoming user instances and compatible manufacturing solutions generated by the cloud platform. In this way, the machine learning procedure is able to perform a customer segmentation and build a recommendation list characterized by a ranking of manufacturing solutions which is tailored to the specific customer profile. With the aim to validate the proposed intelligent decision-making support system, a case study is simulated within the framework of a cloud manufacturing platform delivering dynamic sharing of sheet metal cutting manufacturing solutions. The system capability is discussed in terms of machine learning performance as well as industrial applicability and user selection likelihood.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助南星采纳,获得10
1秒前
顶天立地发布了新的文献求助10
2秒前
医路微光完成签到,获得积分10
3秒前
ZzoKk完成签到,获得积分10
3秒前
mddy完成签到,获得积分20
3秒前
落叶听风笑完成签到,获得积分10
4秒前
林自完成签到,获得积分10
4秒前
4秒前
霸气的戒指完成签到,获得积分10
4秒前
小马甲应助想人陪的语风采纳,获得10
4秒前
虚心的猕猴桃完成签到,获得积分10
5秒前
5秒前
kaye发布了新的文献求助10
5秒前
涵涵可以完成签到,获得积分10
6秒前
6秒前
red发布了新的文献求助10
7秒前
linshu发布了新的文献求助10
7秒前
8秒前
大雄的静香完成签到,获得积分10
8秒前
8秒前
哈哈完成签到,获得积分20
8秒前
8秒前
搜集达人应助青雉采纳,获得10
9秒前
熊卿利完成签到,获得积分10
9秒前
不安青牛应助飘逸香彤采纳,获得10
10秒前
耶耶粘豆包完成签到,获得积分10
10秒前
10秒前
11秒前
深年完成签到,获得积分10
11秒前
cxc发布了新的文献求助10
11秒前
浮游应助ashely采纳,获得10
11秒前
科研小白发布了新的文献求助10
11秒前
12秒前
butaishao发布了新的文献求助20
12秒前
HAL应助huhaoran采纳,获得10
12秒前
熊卿利发布了新的文献求助10
12秒前
睡到自然醒完成签到,获得积分20
13秒前
班钰完成签到,获得积分20
13秒前
薛华倩发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441082
求助须知:如何正确求助?哪些是违规求助? 4551892
关于积分的说明 14232774
捐赠科研通 4472902
什么是DOI,文献DOI怎么找? 2451111
邀请新用户注册赠送积分活动 1442077
关于科研通互助平台的介绍 1418241