已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Reveals a Multipredictor Nomogram for Diagnosing the Alzheimer’s Disease Based on Chemiluminescence Immunoassay for Total Tau in Plasma

列线图 接收机工作特性 正电子发射断层摄影术 曲线下面积 医学 人口 核医学 阿尔茨海默病 背景(考古学) 阿尔茨海默病神经影像学倡议 人工智能 肿瘤科 内科学 机器学习 疾病 计算机科学 生物 环境卫生 古生物学
作者
Lingyu Zhang,Danhua Wang,Yibei Dai,Xuchu Wang,Ying Cao,Weiwei Liu,Zhihua Tao
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fnagi.2022.863673
摘要

Background Predicting amnestic mild cognitive impairment (aMCI) in conversion and Alzheimer’s disease (AD) remains a daunting task. Standard diagnostic procedures for AD population are reliant on neuroimaging features (positron emission tomography, PET), cerebrospinal fluid (CSF) biomarkers (Aβ1-42, T-tau, P-tau), which are expensive or require invasive sampling. The blood-based biomarkers offer the opportunity to provide an alternative approach for easy diagnosis of AD, which would be a less invasive and cost-effective screening tool than currently approved CSF or amyloid β positron emission tomography (PET) biomarkers. Methods We developed and validated a sensitive and selective immunoassay for total Tau in plasma. Robust signatures were obtained based on several clinical features selected by multiple machine learning algorithms between the three participant groups. Subsequently, a well-fitted nomogram was constructed and validated, integrating clinical factors and total Tau concentration. The predictive performance was evaluated according to the receiver operating characteristic (ROC) curves and area under the curve (AUC) statistics. Decision curve analysis and calibration curves are used to evaluate the net benefit of nomograms in clinical decision-making. Results Under optimum conditions, chemiluminescence analysis (CLIA) displays a desirable dynamic range within Tau concentration from 7.80 to 250 pg/mL with readily achieved higher performances (LOD: 5.16 pg/mL). In the discovery cohort, the discrimination between the three well-defined participant groups according to Tau concentration was in consistent agreement with clinical diagnosis (AD vs. non-MCI: AUC = 0.799; aMCI vs. non-MCI: AUC = 0.691; AD vs. aMCI: AUC = 0.670). Multiple machine learning algorithms identified Age, Gender, EMPG, Tau, ALB, HCY, VB12, and/or Glu as robust signatures. A nomogram integrated total Tau concentration and clinical factors provided better predictive performance (AD vs. non-MCI: AUC = 0.960, AD vs. aMCI: AUC = 0.813 in discovery cohort; AD vs. non-MCI: AUC = 0.938, AD vs. aMCI: AUC = 0.754 in validation cohort). Conclusion The developed assay and a satisfactory nomogram model hold promising clinical potential for early diagnosis of aMCI and AD participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羞涩的盼山完成签到 ,获得积分10
刚刚
科研通AI5应助恋阙谙采纳,获得10
1秒前
miemie完成签到,获得积分10
3秒前
阳光青文完成签到 ,获得积分10
3秒前
黑巧的融化完成签到 ,获得积分10
3秒前
Thing完成签到,获得积分10
4秒前
4秒前
mkljl完成签到 ,获得积分10
4秒前
6秒前
文艺的电源完成签到 ,获得积分10
6秒前
7秒前
TongKY完成签到 ,获得积分10
8秒前
朴素的不乐完成签到 ,获得积分10
8秒前
完美元柏发布了新的文献求助10
8秒前
cccj发布了新的文献求助10
9秒前
高天雨完成签到 ,获得积分10
9秒前
岑晓冰完成签到 ,获得积分10
9秒前
欣慰妙海完成签到 ,获得积分10
10秒前
11秒前
哈哈发布了新的文献求助10
14秒前
肖的花园完成签到 ,获得积分10
14秒前
FYF完成签到 ,获得积分20
17秒前
小马甲应助大橘采纳,获得10
17秒前
嗨Honey完成签到 ,获得积分10
17秒前
遇上就这样吧完成签到,获得积分0
18秒前
19秒前
听南发布了新的文献求助10
20秒前
踏实嚣完成签到 ,获得积分10
21秒前
krajicek完成签到,获得积分10
23秒前
cccj完成签到,获得积分10
24秒前
25秒前
岚12完成签到 ,获得积分10
27秒前
自信松思完成签到 ,获得积分10
27秒前
chowhappy发布了新的文献求助10
29秒前
Lucas应助完美元柏采纳,获得10
30秒前
moiumuio完成签到,获得积分10
31秒前
爆炸boom完成签到 ,获得积分10
33秒前
wry完成签到,获得积分10
33秒前
酷酷问夏完成签到 ,获得积分10
38秒前
田様应助坚强的安柏采纳,获得10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815663
求助须知:如何正确求助?哪些是违规求助? 3359277
关于积分的说明 10401860
捐赠科研通 3077021
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694