Vulmg: A Static Detection Solution For Source Code Vulnerabilities Based On Code Property Graph and Graph Attention Network

计算机科学 邻接矩阵 源代码 图形 财产(哲学) 编码(集合论) 功能(生物学) 理论计算机科学 人工智能 脆弱性(计算) 脆弱性评估 机器学习 数据挖掘 计算机安全 程序设计语言 哲学 集合(抽象数据类型) 认识论 进化生物学 生物 心理学 心理弹性 心理治疗师
作者
Haojie Zhang,Yujun Li,Yiwei Liu,Nan-Xin Zhou
标识
DOI:10.1109/iccwamtip53232.2021.9674145
摘要

As the number of vulnerabilities continues to rise, security incidents triggered by vulnerabilities emerge endlessly. Current vulnerability detection methods still have some problems, such as detecting only a single function, relying heavily on expert knowledge, and being unable to achieve automation. According to the observation of the Juliet dataset, we find vulnerability exists not only within the single function but also between the called function and the calling function. Meanwhile, there are some differences between vulnerable functions and non-vulnerable functions in the code property graph. Therefore, this article proposes a vulnerability detection solution named VULMG, which converts vulnerability detection into the graph classification problem. VULMG includes a vectorization component named VecG and a deep learning classification model named MGGAT. Based on the code property graph, VecG extracts the lexical, grammatical, and semantic information of the source code as a feature matrix and extracts information such as structure, control, and dependence as three adjacency matrices. MGGAT is a deep learning model based on the graph attention network, which is used for graph classification. Besides, VULMG uses the FCG to associate the calling function with the called function so that it can detect the cross-function vulnerabilities. We selected CWE369 and CWE476 from the Juliet dataset for testing, and the F1 scores were 94.43% and 96.3%. The evaluation results indicate that VULMG outperforms Flawfinder, RATS, BiLSTM, SVM, and GCN, which verifies the effectiveness of the proposed solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ll采纳,获得10
1秒前
科研通AI5应助伏城采纳,获得30
2秒前
3秒前
旷野完成签到,获得积分10
4秒前
ruoyu111完成签到,获得积分10
5秒前
ChrisKim完成签到,获得积分10
7秒前
8秒前
秋半梦完成签到,获得积分10
8秒前
10秒前
11秒前
12秒前
阳光的卿关注了科研通微信公众号
12秒前
LH完成签到,获得积分10
13秒前
AAA完成签到,获得积分10
13秒前
科研通AI5应助cjjd采纳,获得10
15秒前
wuxunxun2015发布了新的文献求助10
16秒前
伏城发布了新的文献求助30
16秒前
marco完成签到 ,获得积分10
16秒前
弹指一挥间完成签到 ,获得积分10
20秒前
李浩然完成签到,获得积分10
23秒前
苏桑焉完成签到 ,获得积分10
24秒前
26秒前
小马甲应助叶长亭采纳,获得10
27秒前
28秒前
繁荣的忆文完成签到,获得积分10
29秒前
cjjd完成签到,获得积分10
29秒前
29秒前
李浩然发布了新的文献求助10
31秒前
31秒前
ll发布了新的文献求助10
32秒前
cjjd发布了新的文献求助10
34秒前
34秒前
cmicha完成签到 ,获得积分10
37秒前
石火发布了新的文献求助10
37秒前
40秒前
Owen应助cmicha采纳,获得10
41秒前
Yami完成签到 ,获得积分10
43秒前
可爱的函函应助打我呀采纳,获得10
45秒前
45秒前
科研通AI5应助李浩然采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751