Vulmg: A Static Detection Solution For Source Code Vulnerabilities Based On Code Property Graph and Graph Attention Network

计算机科学 邻接矩阵 源代码 图形 财产(哲学) 编码(集合论) 功能(生物学) 理论计算机科学 人工智能 脆弱性(计算) 脆弱性评估 机器学习 数据挖掘 计算机安全 程序设计语言 哲学 集合(抽象数据类型) 认识论 进化生物学 生物 心理学 心理弹性 心理治疗师
作者
Haojie Zhang,Yujun Li,Yiwei Liu,Nan-Xin Zhou
标识
DOI:10.1109/iccwamtip53232.2021.9674145
摘要

As the number of vulnerabilities continues to rise, security incidents triggered by vulnerabilities emerge endlessly. Current vulnerability detection methods still have some problems, such as detecting only a single function, relying heavily on expert knowledge, and being unable to achieve automation. According to the observation of the Juliet dataset, we find vulnerability exists not only within the single function but also between the called function and the calling function. Meanwhile, there are some differences between vulnerable functions and non-vulnerable functions in the code property graph. Therefore, this article proposes a vulnerability detection solution named VULMG, which converts vulnerability detection into the graph classification problem. VULMG includes a vectorization component named VecG and a deep learning classification model named MGGAT. Based on the code property graph, VecG extracts the lexical, grammatical, and semantic information of the source code as a feature matrix and extracts information such as structure, control, and dependence as three adjacency matrices. MGGAT is a deep learning model based on the graph attention network, which is used for graph classification. Besides, VULMG uses the FCG to associate the calling function with the called function so that it can detect the cross-function vulnerabilities. We selected CWE369 and CWE476 from the Juliet dataset for testing, and the F1 scores were 94.43% and 96.3%. The evaluation results indicate that VULMG outperforms Flawfinder, RATS, BiLSTM, SVM, and GCN, which verifies the effectiveness of the proposed solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术大白完成签到 ,获得积分10
3秒前
3秒前
SYT完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
7秒前
8秒前
8秒前
魏伯安发布了新的文献求助10
8秒前
8秒前
zhouleiwang完成签到,获得积分10
9秒前
李爱国应助aiming采纳,获得10
10秒前
无奈傲菡完成签到,获得积分10
11秒前
TT发布了新的文献求助10
11秒前
啦啦啦发布了新的文献求助10
12秒前
sun发布了新的文献求助10
13秒前
荣荣完成签到,获得积分10
13秒前
14秒前
小安完成签到,获得积分10
15秒前
Spencer完成签到 ,获得积分10
15秒前
PengHu完成签到,获得积分10
16秒前
16秒前
18秒前
20秒前
20秒前
20秒前
ywang发布了新的文献求助10
21秒前
失眠虔纹完成签到,获得积分10
21秒前
斯文败类应助nextconnie采纳,获得10
21秒前
药学牛马发布了新的文献求助10
25秒前
25秒前
26秒前
29秒前
张无缺完成签到,获得积分10
32秒前
34秒前
CodeCraft应助MES采纳,获得10
35秒前
笨笨乘风完成签到,获得积分10
36秒前
田様应助axunQAQ采纳,获得10
38秒前
完美秋烟发布了新的文献求助10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849