亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis

神经影像学 计算机科学 机器学习 人工智能 图形 深度学习 卷积神经网络 自闭症谱系障碍 自闭症 神经科学 连接体 功能连接 心理学 理论计算机科学 发展心理学
作者
Guangqi Wen,Peng Cao,Huiwen Bao,Wenju Yang,Tong Zheng,Osmar R. Zaı̈ane
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:142: 105239-105239 被引量:112
标识
DOI:10.1016/j.compbiomed.2022.105239
摘要

Recently, functional brain networks (FBN) have been used for the classification of neurological disorders, such as Autism Spectrum Disorders (ASD). Neurological disorder diagnosis with FBN is a challenging task due to the high heterogeneity in subjects and the noise correlations in brain networks. Meanwhile, it is challenging for the existing deep learning models to provide interpretable insights into the brain network. We propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework. In this paper, we build upon graph neural network in order to learn effective representations for brain networks in an end-to-end fashion. Specifically, we present a prior brain structure learning-guided multi-view graph convolutional neural network (MVS-GCN), which collaborates the graph structure learning and multi-task graph embedding learning to improve the classification performance and identify the potential functional subnetworks. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results indicate that our MVS-GCN can achieve enhanced performance compared with state-of-the-art methods. Notably, MVS-GCN achieves an average accuracy/AUC of 69.38%/69.01% on the ABIDE dataset. Moreover, the obtained results from our model show high consistency with the previous neuroimaging derived evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the proposed MVS-GCN model. The proposed MVS-GCN method performs a graph embedding learning from the multi-views graph embedding learning perspective while considering eliminating the heterogeneity in brain networks and enhancing the feature representation of functional subnetworks, which can capture the essential embeddings to improve the classification performance of brain disorder diagnosis. The code is available at https://github.com/GuangqiWen/MVS-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYP应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
ZYP应助科研通管家采纳,获得10
16秒前
30秒前
34秒前
脑洞疼应助阿萨卡先生采纳,获得10
40秒前
46秒前
Cherry完成签到 ,获得积分10
1分钟前
1分钟前
zwang688完成签到,获得积分10
1分钟前
2分钟前
领导范儿应助wyx采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
3分钟前
激动的xx完成签到 ,获得积分10
3分钟前
涛老三完成签到 ,获得积分10
3分钟前
3分钟前
ZYP应助科研通管家采纳,获得10
4分钟前
4分钟前
蓝胖子完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Harrison发布了新的文献求助10
6分钟前
6分钟前
ZYP应助科研通管家采纳,获得10
6分钟前
斯文败类应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
刘书发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
阿萨卡先生完成签到,获得积分20
6分钟前
6分钟前
Medical_Monk完成签到,获得积分10
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455081
求助须知:如何正确求助?哪些是违规求助? 4562276
关于积分的说明 14284999
捐赠科研通 4486239
什么是DOI,文献DOI怎么找? 2457270
邀请新用户注册赠送积分活动 1447880
关于科研通互助平台的介绍 1423164