MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis

神经影像学 计算机科学 机器学习 人工智能 图形 深度学习 卷积神经网络 自闭症谱系障碍 自闭症 神经科学 连接体 功能连接 心理学 理论计算机科学 发展心理学
作者
Guangqi Wen,Peng Cao,Huiwen Bao,Wenju Yang,Tong Zheng,Osmar R. Zaı̈ane
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:142: 105239-105239 被引量:112
标识
DOI:10.1016/j.compbiomed.2022.105239
摘要

Recently, functional brain networks (FBN) have been used for the classification of neurological disorders, such as Autism Spectrum Disorders (ASD). Neurological disorder diagnosis with FBN is a challenging task due to the high heterogeneity in subjects and the noise correlations in brain networks. Meanwhile, it is challenging for the existing deep learning models to provide interpretable insights into the brain network. We propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework. In this paper, we build upon graph neural network in order to learn effective representations for brain networks in an end-to-end fashion. Specifically, we present a prior brain structure learning-guided multi-view graph convolutional neural network (MVS-GCN), which collaborates the graph structure learning and multi-task graph embedding learning to improve the classification performance and identify the potential functional subnetworks. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results indicate that our MVS-GCN can achieve enhanced performance compared with state-of-the-art methods. Notably, MVS-GCN achieves an average accuracy/AUC of 69.38%/69.01% on the ABIDE dataset. Moreover, the obtained results from our model show high consistency with the previous neuroimaging derived evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the proposed MVS-GCN model. The proposed MVS-GCN method performs a graph embedding learning from the multi-views graph embedding learning perspective while considering eliminating the heterogeneity in brain networks and enhancing the feature representation of functional subnetworks, which can capture the essential embeddings to improve the classification performance of brain disorder diagnosis. The code is available at https://github.com/GuangqiWen/MVS-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ytolll完成签到,获得积分10
1秒前
mj789发布了新的文献求助10
1秒前
2秒前
呱呱呱呱呱呱完成签到 ,获得积分10
3秒前
酷波er应助空空如也采纳,获得10
3秒前
碗碗发布了新的文献求助30
3秒前
3秒前
科学家完成签到,获得积分10
4秒前
草木发布了新的文献求助10
5秒前
罗明明完成签到 ,获得积分10
5秒前
6秒前
aDou完成签到 ,获得积分10
6秒前
7秒前
7秒前
姜呱呱呱完成签到,获得积分10
7秒前
7秒前
在下小绿发布了新的文献求助10
7秒前
传奇3应助虚幻的曼冬采纳,获得10
7秒前
ztlooo完成签到,获得积分20
7秒前
顺心的面包完成签到,获得积分10
8秒前
8秒前
nyzcc发布了新的文献求助10
8秒前
嘻嘻完成签到,获得积分10
9秒前
林苑小辣椒完成签到,获得积分10
9秒前
朱佳慧发布了新的文献求助10
9秒前
哈哈发布了新的文献求助10
10秒前
香蕉觅云应助mj789采纳,获得10
11秒前
12秒前
12秒前
Akim应助jjjuq采纳,获得30
12秒前
充电宝应助冷艳的火龙果采纳,获得10
13秒前
Lucas应助kylin采纳,获得10
13秒前
卓卓完成签到,获得积分10
13秒前
孙燕应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
ECHO发布了新的文献求助10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
14秒前
科目三应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947472
求助须知:如何正确求助?哪些是违规求助? 3492741
关于积分的说明 11066427
捐赠科研通 3223582
什么是DOI,文献DOI怎么找? 1781591
邀请新用户注册赠送积分活动 866393
科研通“疑难数据库(出版商)”最低求助积分说明 800332