MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis

神经影像学 计算机科学 机器学习 人工智能 图形 深度学习 卷积神经网络 自闭症谱系障碍 自闭症 神经科学 连接体 功能连接 心理学 理论计算机科学 发展心理学
作者
Guangqi Wen,Peng Cao,Huiwen Bao,Wenju Yang,Tong Zheng,Osmar R. Zaı̈ane
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:142: 105239-105239 被引量:112
标识
DOI:10.1016/j.compbiomed.2022.105239
摘要

Recently, functional brain networks (FBN) have been used for the classification of neurological disorders, such as Autism Spectrum Disorders (ASD). Neurological disorder diagnosis with FBN is a challenging task due to the high heterogeneity in subjects and the noise correlations in brain networks. Meanwhile, it is challenging for the existing deep learning models to provide interpretable insights into the brain network. We propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework. In this paper, we build upon graph neural network in order to learn effective representations for brain networks in an end-to-end fashion. Specifically, we present a prior brain structure learning-guided multi-view graph convolutional neural network (MVS-GCN), which collaborates the graph structure learning and multi-task graph embedding learning to improve the classification performance and identify the potential functional subnetworks. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results indicate that our MVS-GCN can achieve enhanced performance compared with state-of-the-art methods. Notably, MVS-GCN achieves an average accuracy/AUC of 69.38%/69.01% on the ABIDE dataset. Moreover, the obtained results from our model show high consistency with the previous neuroimaging derived evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the proposed MVS-GCN model. The proposed MVS-GCN method performs a graph embedding learning from the multi-views graph embedding learning perspective while considering eliminating the heterogeneity in brain networks and enhancing the feature representation of functional subnetworks, which can capture the essential embeddings to improve the classification performance of brain disorder diagnosis. The code is available at https://github.com/GuangqiWen/MVS-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS1025861完成签到 ,获得积分10
刚刚
天天快乐应助莉莉娅89采纳,获得10
2秒前
wuhoo发布了新的文献求助10
4秒前
5秒前
5秒前
长情尔曼完成签到,获得积分10
6秒前
10秒前
长情尔曼发布了新的文献求助10
10秒前
dennisysz发布了新的文献求助10
10秒前
10秒前
小蜗牛完成签到 ,获得积分10
13秒前
lxy发布了新的文献求助10
15秒前
16秒前
完美世界应助义气的访波采纳,获得10
20秒前
21秒前
豌豆发布了新的文献求助10
21秒前
沉静的时光完成签到 ,获得积分10
21秒前
21秒前
NexusExplorer应助Gakay采纳,获得10
22秒前
CodeCraft应助豌豆采纳,获得10
24秒前
若有光发布了新的文献求助30
25秒前
26秒前
mao应助林qjr采纳,获得20
27秒前
jasonjiang完成签到 ,获得积分0
32秒前
爆米花应助若有光采纳,获得10
32秒前
Orange应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
大个应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
37秒前
天天快乐应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
小马甲应助科研通管家采纳,获得10
38秒前
完美世界应助科研通管家采纳,获得10
38秒前
39秒前
43秒前
会撒娇的含巧完成签到,获得积分10
44秒前
小超超完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133