Performance cement-based composite obtained by in-situ growth of organic–inorganic frameworks during the cement hydration

水泥 抗弯强度 材料科学 聚合 聚合物 单体 原位聚合 复合数 聚丙烯酰胺 复合材料 微观结构 自由基聚合 原位 化学工程 高分子化学 有机化学 化学 工程类
作者
Bing Yin,Xianle Hua,Dongmei Qi,Pan Wang,Gang Qiao,Fangyu Fan,Xujiang Hua,Xinpeng Wang,Dongshuai Hou
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:336: 127533-127533 被引量:17
标识
DOI:10.1016/j.conbuildmat.2022.127533
摘要

Cement-based materials are irreplaceable in civil engineering, and hence, there is an ongoing effort to advance their mechanical properties for broadening their utilization in different applications. Modification with polymer still has excellent potential. In this current study, a polymer-modified cement-based material with high flexural strength is prepared by in-situ atom transfer radical polymerization of acrylamide (AM). Polyacrylamide (PAM) is formed by in-situ polymerization as the cement hydrates. The AM monomer in-situ polymerizes rapidly during the first hours and slows down the early cement hydration. The mechanical properties, the microstructure, and the modification model are detailed studied. The results indicate that the proposed composites offer outstanding performance in some aspects. With the M/C ratio increasing, the flexural strength is remarkably improved, by 130% at 7d and 110% at 28d. The mechanisms of performance improvements by in-situ polymerization of AM were also examined. On the one hand, the evenly distributed cross-linked organic–inorganic frameworks, making the flexural strength of samples impressively improved as the monomer to cement ratio increases. On the other hand, due to the polymer, the presence of carboxyl functional groups produces bridged chemical bonds, which further improves the properties of the composite materials. The successful application of in-situ polymerization offers a new strategic approach to solve problems associated with concrete applications and provides technical guidance for improving of concrete structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gt完成签到,获得积分10
3秒前
joleisalau发布了新的文献求助10
3秒前
立冬完成签到,获得积分10
3秒前
7秒前
gqfang完成签到,获得积分10
8秒前
9秒前
梁世秀发布了新的文献求助10
9秒前
科研通AI5应助Nancy采纳,获得10
9秒前
负责丹亦完成签到,获得积分10
10秒前
酷波er应助安安采纳,获得10
11秒前
科研通AI5应助nylon采纳,获得10
12秒前
13秒前
星辰大海应助一一采纳,获得10
15秒前
gt发布了新的文献求助10
16秒前
16秒前
依楼发布了新的文献求助10
17秒前
18秒前
Ace_killer完成签到,获得积分20
18秒前
baolequ发布了新的文献求助10
19秒前
20秒前
充电宝应助Gakay采纳,获得10
21秒前
难过盼海完成签到,获得积分20
21秒前
千空发布了新的文献求助10
21秒前
Nancy发布了新的文献求助10
23秒前
初初见你完成签到,获得积分10
24秒前
霍师傅发布了新的文献求助10
25秒前
科研通AI5应助立尽西风采纳,获得10
25秒前
26秒前
baolequ完成签到,获得积分10
26秒前
田様应助任性的诗柳采纳,获得10
28秒前
一一发布了新的文献求助10
30秒前
30秒前
大个应助Mira采纳,获得10
30秒前
33秒前
像棉花糖的云完成签到,获得积分10
34秒前
35秒前
科研通AI5应助霍师傅采纳,获得10
35秒前
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366