Plasticity-Stability Preserving Multi-Task Learning for Remote Sensing Image Retrieval

计算机科学 人工智能 理论(学习稳定性) 多任务学习 代表(政治) 任务(项目管理) 特征学习 机器学习 功能(生物学) 嵌入 集合(抽象数据类型) 模式识别(心理学) 程序设计语言 管理 进化生物学 政治 政治学 法学 经济 生物
作者
Gencer Sümbül,Begüm Demir
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:15
标识
DOI:10.1109/tgrs.2022.3160097
摘要

Deep learning-based multi-task learning (MTL) methods have recently attracted attention for content-based image retrieval (CBIR) applications in remote sensing (RS). For a given set of tasks (e.g., scene classification, semantic segmentation, and image reconstruction), existing MTL methods employ a joint optimization algorithm on the direct aggregation of task-specific loss functions. Such an approach may provide limited CBIR performance when: 1) tasks compete or even distract each other; 2) one of the tasks dominates the whole learning procedure; or 3) characterization of each task is underperformed compared to single-task learning. This is mainly due to the lack of: 1) plasticity condition (which is associated with sensitivity to new information) or 2) stability condition (which is associated with protection from radical disruptions by new information) of the whole learning procedure. To avoid this issue, as a first time, we propose a novel plasticity-stability preserving MTL (PLASTA-MTL) approach to ensure the plasticity and the stability conditions of the whole learning procedure independently of the number and type of tasks. This is achieved by defining two novel loss functions. The first loss function is the plasticity preserving loss (PPL) function that aims to enforce the global image representation space to be sensitive to new information learned with each task. This is achieved by minimizing the difference of gradient magnitudes for the global representation and task-specific embedding spaces. The second loss function is the stability preserving loss (SPL) function that aims to protect the global representation space radically disrupted by a new task. This is achieved by minimizing the angular distances between the task gradients over global representation space. To effectively employ the proposed loss functions, we also introduce a novel sequential optimization algorithm. Experimental results show the effectiveness of the proposed approach compared to the state-of-the-art MTL methods in the context of CBIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TIX完成签到 ,获得积分10
1秒前
凝心完成签到,获得积分10
3秒前
研友_8YK7Pn发布了新的文献求助10
5秒前
纯情的远山完成签到,获得积分10
5秒前
Steven发布了新的文献求助10
5秒前
Leo发布了新的文献求助10
5秒前
搜集达人应助冷酷太清采纳,获得10
6秒前
hecarli完成签到,获得积分0
8秒前
怎么会睡不醒完成签到 ,获得积分10
10秒前
10秒前
Zhangtao完成签到,获得积分10
10秒前
tyj完成签到,获得积分10
11秒前
11秒前
学习鱼完成签到,获得积分10
12秒前
Leo完成签到,获得积分10
13秒前
standingo完成签到,获得积分10
13秒前
不爱吃banana的猴子完成签到,获得积分10
14秒前
复杂念梦完成签到,获得积分10
15秒前
圈圈应助落后书竹采纳,获得10
16秒前
111111111发布了新的文献求助10
18秒前
18秒前
wljwljwlj完成签到 ,获得积分10
19秒前
lf-leo完成签到,获得积分10
20秒前
南宫书瑶完成签到,获得积分10
20秒前
独特的易形完成签到,获得积分10
20秒前
磊枝发布了新的文献求助10
21秒前
一个完成签到 ,获得积分10
21秒前
等待的幼晴完成签到,获得积分10
22秒前
lulu完成签到,获得积分10
22秒前
书临完成签到 ,获得积分10
22秒前
22秒前
深情安青应助科研通管家采纳,获得10
23秒前
冰魂应助科研通管家采纳,获得60
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
冰魂应助科研通管家采纳,获得10
23秒前
23秒前
lyric完成签到,获得积分10
24秒前
lulu发布了新的文献求助30
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522