Hypergraph Contrastive Collaborative Filtering

超图 计算机科学 协同过滤 推荐系统 稳健性(进化) 图形 水准点(测量) 平滑的 理论计算机科学 人工智能 机器学习 数据挖掘 离散数学 地理 化学 基因 生物化学 数学 计算机视觉 大地测量学
作者
Lianghao Xia,Chao Huang,Yong Xu,Jiashu Zhao,Dawei Yin,Jimmy Xiangji Huang
标识
DOI:10.1145/3477495.3532058
摘要

Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing users and items into latent representation space, with their correlative patterns from interaction data. Among various CF techniques, the development of GNN-based recommender systems, e.g., PinSage and LightGCN, has offered the state-of-the-art performance. However, two key challenges have not been well explored in existing solutions: i) The over-smoothing effect with deeper graph-based CF architecture, may cause the indistinguishable user representations and degradation of recommendation results. ii) The supervision signals (i.e., user-item interactions) are usually scarce and skewed distributed in reality, which limits the representation power of CF paradigms. To tackle these challenges, we propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF) to jointly capture local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture. In particular, the designed hypergraph structure learning enhances the discrimination ability of GNN-based CF paradigm, so as to comprehensively capture the complex high-order dependencies among users. Additionally, our HCCF model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems, based on the hypergraph-enhanced self-discrimination. Extensive experiments on three benchmark datasets demonstrate the superiority of our model over various state-of-the-art recommendation methods, and the robustness against sparse user interaction data. Our model implementation codes are available at https://github.com/akaxlh/HCCF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无所事事的無完成签到,获得积分10
1秒前
cdercder应助白兰鸽采纳,获得10
1秒前
温润如玉坤完成签到,获得积分10
1秒前
222发布了新的文献求助10
2秒前
ES完成签到 ,获得积分0
2秒前
子唯完成签到,获得积分10
3秒前
man完成签到 ,获得积分10
4秒前
4秒前
littleJ完成签到,获得积分10
5秒前
清爽盼秋完成签到,获得积分10
5秒前
tym完成签到 ,获得积分10
5秒前
qqq完成签到 ,获得积分10
6秒前
无敌通发布了新的文献求助10
6秒前
6秒前
和谐成协完成签到,获得积分10
8秒前
Chamsel完成签到,获得积分10
8秒前
pufanlg完成签到,获得积分10
8秒前
10秒前
慕青应助YY_PLY采纳,获得10
10秒前
qianchimo完成签到 ,获得积分10
10秒前
和春住完成签到,获得积分10
10秒前
QP34完成签到 ,获得积分10
10秒前
amwlsai完成签到,获得积分10
11秒前
春日午后完成签到,获得积分10
11秒前
louis完成签到,获得积分10
13秒前
高贵的往事完成签到,获得积分10
13秒前
早睡早起完成签到 ,获得积分10
13秒前
灵巧的以亦完成签到,获得积分10
14秒前
wcx完成签到,获得积分10
14秒前
16秒前
丿淘丶Tao丨完成签到,获得积分10
16秒前
体贴啤酒完成签到,获得积分10
16秒前
JS完成签到,获得积分10
16秒前
LWB发布了新的文献求助10
18秒前
辛未完成签到 ,获得积分10
18秒前
18秒前
yaya完成签到 ,获得积分10
19秒前
Pursuit完成签到,获得积分10
19秒前
佳无夜完成签到,获得积分10
19秒前
DrW完成签到,获得积分10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804299
求助须知:如何正确求助?哪些是违规求助? 3349099
关于积分的说明 10341704
捐赠科研通 3065225
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808587
科研通“疑难数据库(出版商)”最低求助积分说明 764620