YOLOXSP: a student pose keypoint recognition model for occlusion smart classroom analysis

计算机科学 稳健性(进化) 人工智能 水准点(测量) 姿势 计算机视觉 活动识别 特征(语言学) 机器学习 深度学习 可靠性(半导体) 模式识别(心理学) 特征提取 人工神经网络 放射性检测 深层神经网络 频道(广播) 人机交互 标记数据 大数据 钥匙(锁)
作者
Zhaoyu Shou,Hang Liu,Xiaobu Xu,Dongxu Li,ZIYONG WU,Juhua Huang,Hongbin Liao
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:: 1-29
标识
DOI:10.1108/ijicc-03-2025-0167
摘要

Purpose Occluded human pose estimation presents a substantial difficulty in the domains of smart classrooms and big data analysis, profoundly influencing the advancement of intelligent educational systems. The swift progress of AI-driven education has led to a growing necessity for precise human pose keypoint recognition technology in actual classroom environments. Nonetheless, occlusions resulting from student interactions and physical obstructions like desks offer significant hurdles for conventional pose estimation methods, frequently resulting in diminished reliability and performance. This study introduces a novel framework, YOLOXSP, designed to enhance the precision of keypoint recognition and facilitate the advancement of intelligent education systems. Design/methodology/approach The primary applications of this research lie in AI-powered education systems and large-scale classroom data analytics. The main objective is to develop an occluded pose estimation framework that accurately detects human keypoints under occlusion. This framework addresses the limitations of existing methods in handling occluded poses, offering more reliable solutions for intelligent educational environments. The YOLOXSP model includes a shared-separation dual-channel detection head (ShareSepHead) that separates spatial and channel features to improve detection accuracy. It further incorporates a novel sparse cyclic dual-channel attention mechanism (NS-CBAM), which selectively strengthens feature representations in occluded regions via multi-stage attention. Additionally, an anti-occlusion loss (Aol) is designed to adaptively penalize keypoint errors under occlusion, significantly improving the model's robustness in smart classroom settings. Findings Experimental results show that YOLOXSP, built upon the YOLOv8x-POSE baseline, outperforms existing methods, achieving 73.2\% keypoint mAP on the heavily occluded public benchmark OCHuman, 91.9\% keypoint mAP on the dense real-world classroom dataset GUET-POSE, and 75.8\% keypoint mAP on the GUET-Occluded-POSE dataset tailored for realistic occlusion scenarios. These results highlight the model's enhanced robustness in handling occluded keypoints and demonstrate its practical utility in smart classroom applications. Research limitations/implications This study focuses primarily on student posture estimation in smart classrooms. Future research could extend the model to broader human pose estimation applications in more diverse educational settings. Practical implications The proposed method contributes to more accurate student posture analysis, facilitating intelligent learning state assessment and engagement evaluation in smart classrooms. Social implications The study contributes to the broader adoption of AI-driven education by improving automated student posture analysis. Enhanced engagement detection can help educators develop personalized learning strategies, fostering a more inclusive and effective educational environment. The ability to assess learning behaviors in real-time promotes adaptive teaching approaches, benefiting both in-person and remote learning. Furthermore, the dataset and model can be extended to other educational and behavioral research fields, supporting innovations in human-computer interaction, cognitive analysis, and assistive technologies. By improving occlusion-resistant pose estimation, this research enhances AI's role in educational accessibility and student well-being. Originality/value By designing ShareSepHead, NS-CBAM, and the Aol function, this study advances human pose estimation in occluded and dense keypoint scenarios. The YOLOXSP framework's innovative design enhances pose detection accuracy in smart classrooms, making it highly suitable for AI-powered educational systems. This approach has the potential to further advance intelligent education and related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泉水完成签到 ,获得积分10
刚刚
刚刚
一口娴蛋黄完成签到,获得积分10
1秒前
小苏打完成签到,获得积分10
1秒前
香蕉斓发布了新的文献求助10
1秒前
承诺信守完成签到,获得积分10
1秒前
小录完成签到 ,获得积分10
1秒前
响子完成签到,获得积分10
1秒前
wuge完成签到,获得积分10
1秒前
绿豆鲨发布了新的文献求助10
2秒前
所所应助潇洒的芸采纳,获得10
2秒前
xiaoxiao完成签到,获得积分10
2秒前
海绵宝宝发布了新的文献求助10
3秒前
清浅发布了新的文献求助10
3秒前
3秒前
Goyounjung发布了新的文献求助10
3秒前
3秒前
3秒前
迷路赛君完成签到,获得积分10
4秒前
阿怪完成签到,获得积分10
4秒前
Gaojin锦完成签到,获得积分10
4秒前
xulei完成签到,获得积分10
4秒前
勤劳寒烟完成签到,获得积分10
4秒前
李莹完成签到,获得积分10
4秒前
5秒前
Shiki完成签到,获得积分10
5秒前
zengzeng完成签到,获得积分10
5秒前
5秒前
5秒前
521发布了新的文献求助10
6秒前
科目三应助昵称采纳,获得10
6秒前
6秒前
pocky发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
mengshuai发布了新的文献求助10
6秒前
大111完成签到,获得积分10
7秒前
XX发布了新的文献求助10
7秒前
JamesPei应助xgg采纳,获得10
7秒前
隐身小怪兽完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059