Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration

人工智能 测地线 计算机科学 计算机视觉 图像配准 卷积神经网络 深度学习 模式识别(心理学) 姿势 航程(航空) 数学 图像(数学) 数学分析 复合材料 材料科学
作者
Seyed Sadegh Mohseni Salehi,Shadab Khan,Deniz Erdoğmuş,Ali Gholipour
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 470-481 被引量:103
标识
DOI:10.1109/tmi.2018.2866442
摘要

With an aim to increase the capture range and accelerate the performance of state-of-the-art inter-subject and subject-to-template 3-D rigid registration, we propose deep learning-based methods that are trained to find the 3-D position of arbitrarily-oriented subjects or anatomy in a canonical space based on slices or volumes of medical images. For this, we propose regression convolutional neural networks (CNNs) that learn to predict the angle-axis representation of 3-D rotations and translations using image features. We use and compare mean square error and geodesic loss to train regression CNNs for 3-D pose estimation used in two different scenarios: slice-to-volume registration and volume-to-volume registration. As an exemplary application, we applied the proposed methods to register arbitrarily oriented reconstructed images of fetuses scanned in-utero at a wide gestational age range to a standard atlas space. Our results show that in such registration applications that are amendable to learning, the proposed deep learning methods with geodesic loss minimization achieved 3-D pose estimation with a wide capture range in real-time (<;100ms). We also tested the generalization capability of the trained CNNs on an expanded age range and on images of newborn subjects with similar and different MR image contrasts. We trained our models on T2-weighted fetal brain MRI scans and used them to predict the 3-D pose of newborn brains based on T1-weighted MRI scans. We showed that the trained models generalized well for the new domain when we performed image contrast transfer through a conditional generative adversarial network. This indicates that the domain of application of the trained deep regression CNNs can be further expanded to image modalities and contrasts other than those used in training. A combination of our proposed methods with accelerated optimization-based registration algorithms can dramatically enhance the performance of automatic imaging devices and image processing methods of the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的新筠完成签到,获得积分10
刚刚
istudy完成签到,获得积分10
刚刚
刚刚
科研通AI6应助鸡毛采纳,获得30
刚刚
SciGPT应助顺顺尼采纳,获得10
刚刚
1秒前
本是个江湖散人完成签到,获得积分10
2秒前
科研通AI2S应助Zhjie126采纳,获得10
2秒前
西西里柠檬完成签到,获得积分10
3秒前
洪云峰发布了新的文献求助10
3秒前
科研通AI5应助妮妮采纳,获得10
3秒前
zhang完成签到,获得积分10
3秒前
浮游应助狂野台灯采纳,获得10
4秒前
受伤书文完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
peng发布了新的文献求助10
6秒前
冰糖葫芦娃完成签到,获得积分10
6秒前
keyan_zhou发布了新的文献求助10
7秒前
7秒前
小李发布了新的文献求助20
10秒前
10秒前
小芦铃发布了新的文献求助10
11秒前
SciGPT应助满意的聋五采纳,获得10
11秒前
alison应助一瓶水采纳,获得10
12秒前
12秒前
JamesPei应助轻松的芯采纳,获得10
12秒前
orixero应助欠虐宝宝采纳,获得10
13秒前
肆_完成签到 ,获得积分10
13秒前
俭朴冬瓜完成签到,获得积分10
14秒前
务实的落雁完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
翼德救我i应助wke采纳,获得10
15秒前
15秒前
Zhjie126发布了新的文献求助10
16秒前
16秒前
16秒前
peng完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921428
求助须知:如何正确求助?哪些是违规求助? 4192669
关于积分的说明 13022629
捐赠科研通 3964015
什么是DOI,文献DOI怎么找? 2172808
邀请新用户注册赠送积分活动 1190454
关于科研通互助平台的介绍 1099651