Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020

建筑 数据科学 计算机科学 期货合约 点(几何) 人工智能 地理 几何学 数学 考古 金融经济学 经济
作者
Gi̇zem Özerol Özman,Semra Arslan Selçuk
出处
期刊:International Journal of Architectural Computing [SAGE Publishing]
卷期号:21 (1): 23-41 被引量:16
标识
DOI:10.1177/14780771221100102
摘要

Through the recent technological developments within the fourth industrial revolution, artificial intelligence (AI) studies have had a huge impact on various disciplines such as social sciences, information communication technologies (ICTs), architecture, engineering, and construction (AEC). Regarding decision-making and forecasting systems in particular, AI and machine learning (ML) technologies have provided an opportunity to improve the mutual relationships between machines and humans. When the connection between ML and architecture is considered, it is possible to claim that there is no parallel acceleration as in other disciplines. In this study, and considering the latest breakthroughs, we focus on revealing what ML and architecture have in common. Our focal point is to reveal common points by classifying and analyzing current literature through describing the potential of ML in architecture. Studies conducted using ML techniques and subsets of AI technologies were used in this paper, and the resulting data were interpreted using the bibliometric analysis method. In order to discuss the state-of-the-art research articles which have been published between 2014 and 2020, main subjects, subsets, and keywords were refined through the search engines. The statistical figures were demonstrated as huge datasets, and the results were clearly delineated through Sankey diagrams. Thanks to bibliometric analyses of the current literature of WOS (Web of Science), CUMINCAD (Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD, and CAAD futures), predictable data have been presented allowing recommendations for possible future studies for researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助水流众生采纳,获得10
1秒前
1秒前
SRQ发布了新的文献求助10
1秒前
drtianyunhong完成签到,获得积分10
1秒前
丙烯酸树脂完成签到,获得积分10
2秒前
mingming发布了新的文献求助10
2秒前
sugar完成签到,获得积分10
2秒前
2秒前
呆萌凤完成签到 ,获得积分10
3秒前
3秒前
远看寒山完成签到,获得积分10
4秒前
我是老大应助张亨彬采纳,获得10
4秒前
xue112完成签到 ,获得积分10
4秒前
小烦同学完成签到,获得积分10
4秒前
十八子完成签到,获得积分10
6秒前
冷酷莺发布了新的文献求助10
6秒前
顺利南珍完成签到,获得积分20
9秒前
细心的梦芝完成签到,获得积分10
9秒前
ding应助xiaohuang采纳,获得10
9秒前
自由月亮完成签到 ,获得积分10
10秒前
10秒前
11秒前
iNk应助idynamics采纳,获得10
12秒前
零吾完成签到 ,获得积分10
12秒前
李健应助叮当的猫采纳,获得10
12秒前
西西完成签到,获得积分10
13秒前
13秒前
su完成签到,获得积分10
13秒前
遇上就这样吧应助saintly919采纳,获得30
14秒前
秀丽的小懒虫完成签到,获得积分10
15秒前
冯梦梦完成签到 ,获得积分10
15秒前
Jialing完成签到,获得积分10
15秒前
噜噜噜噜噜完成签到,获得积分10
15秒前
sanbai-li应助mingming采纳,获得10
17秒前
科研通AI5应助cugwzr采纳,获得10
17秒前
17秒前
尊敬的夏槐完成签到,获得积分10
17秒前
乐意发布了新的文献求助10
18秒前
自然沁完成签到,获得积分10
18秒前
WW完成签到,获得积分10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798603
求助须知:如何正确求助?哪些是违规求助? 3344274
关于积分的说明 10319445
捐赠科研通 3060850
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806778
科研通“疑难数据库(出版商)”最低求助积分说明 763372