Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review

机器学习 人工智能 计算机科学 深度学习 模式 水准点(测量) 癌症 医学 大地测量学 社会科学 内科学 社会学 地理
作者
Deepak Painuli,Suyash Bhardwaj,Utku Köse
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105580-105580 被引量:98
标识
DOI:10.1016/j.compbiomed.2022.105580
摘要

Being a second most cause of mortality worldwide, cancer has been identified as a perilous disease for human beings, where advance stage diagnosis may not help much in safeguarding patients from mortality. Thus, efforts to provide a sustainable architecture with proven cancer prevention estimate and provision for early diagnosis of cancer is the need of hours. Advent of machine learning methods enriched cancer diagnosis area with its overwhelmed efficiency & low error-rate then humans. A significant revolution has been witnessed in the development of machine learning & deep learning assisted system for segmentation & classification of various cancers during past decade. This research paper includes a review of various types of cancer detection via different data modalities using machine learning & deep learning-based methods along with different feature extraction techniques and benchmark datasets utilized in the recent six years studies. The focus of this study is to review, analyse, classify, and address the recent development in cancer detection and diagnosis of six types of cancers i.e., breast, lung, liver, skin, brain and pancreatic cancer, using machine learning & deep learning techniques. Various state-of-the-art technique are clustered into same group and results are examined through key performance indicators like accuracy, area under the curve, precision, sensitivity, dice score on benchmark datasets and concluded with future research work challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄梦松发布了新的文献求助10
刚刚
今后应助ibigbird采纳,获得10
1秒前
3秒前
小蘑菇应助CDH采纳,获得10
4秒前
CipherSage应助青栀采纳,获得10
5秒前
橘柚应助fffff采纳,获得10
5秒前
5秒前
屁王完成签到,获得积分10
5秒前
科研通AI5应助大象放冰箱采纳,获得10
8秒前
Boxcc发布了新的文献求助10
9秒前
dddkcjm完成签到,获得积分10
9秒前
9秒前
10秒前
端庄梦松完成签到,获得积分20
11秒前
郭义敏完成签到,获得积分0
12秒前
12秒前
初见完成签到,获得积分10
13秒前
14秒前
ibigbird发布了新的文献求助10
14秒前
小二郎应助兴奋的若菱采纳,获得10
15秒前
15秒前
18秒前
18秒前
19秒前
无所吊谓发布了新的文献求助10
19秒前
20秒前
科研通AI5应助peikyang采纳,获得10
20秒前
Yipou完成签到,获得积分10
21秒前
HOME发布了新的文献求助10
21秒前
leo发布了新的文献求助10
21秒前
cannon8应助畅快的飞珍采纳,获得20
23秒前
23秒前
rengongzi完成签到,获得积分10
25秒前
青栀发布了新的文献求助10
25秒前
Jasper应助枯藤老柳树采纳,获得10
26秒前
飲料大隊長完成签到,获得积分10
28秒前
烟花应助Serendipity_0614采纳,获得10
29秒前
29秒前
fishhh应助wang采纳,获得10
34秒前
玛卡哔咔完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780270
求助须知:如何正确求助?哪些是违规求助? 3325566
关于积分的说明 10223524
捐赠科研通 3040706
什么是DOI,文献DOI怎么找? 1668974
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634