Self-adaptive loss balanced Physics-informed neural networks

人工神经网络 计算机科学 统计物理学 人工智能 物理
作者
Zixue Xiang,Wei Peng,Xü Liu,Wen Yao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:496: 11-34 被引量:209
标识
DOI:10.1016/j.neucom.2022.05.015
摘要

Physics-informed neural networks (PINNs) have received significant attention as a representative deep learning-based technique for solving partial differential equations (PDEs). The loss function of PINNs is a weighted sum of multiple terms, including the mismatch of observed data, boundary and initial constraints, as well as PDE residuals. In this paper, we observe that the performance of PINNs is susceptible to the weighted combination of competitive multiple loss functions. Therefore, we establish Gaussian probabilistic models to define the self-adaptive loss function through the adaptive weights for each loss term. In particular, we propose a self-adaptive loss balanced method that automatically assigns the weights of losses by updating adaptive weights in each epoch based on the maximum likelihood estimation. Finally, we perform a series of numerical experiments with self-adaptive loss balanced physics-informed neural networks (lbPINNs), including solving Poisson, Burgers, Helmholtz, Navier–Stokes, and Allen–Cahn equations in regular and irregular areas. We also test the robustness of lbPINNs by varying the initial adaptive weights, numbers of observations, hidden layers, and neurons per layer. These experimental results demonstrate that lbPINNs consistently achieve better performance than PINNs, and reduce the relative L2 error by about two orders of magnitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
Lysong发布了新的文献求助20
1秒前
1秒前
2秒前
2秒前
2秒前
氧泡泡完成签到,获得积分10
2秒前
Gzdaigzn完成签到,获得积分10
3秒前
玄音发布了新的文献求助10
3秒前
务实的筝完成签到,获得积分10
4秒前
倦9909发布了新的文献求助10
4秒前
汤飞柏发布了新的文献求助10
5秒前
aodilee完成签到,获得积分10
5秒前
苗条发箍完成签到,获得积分20
5秒前
天天快乐应助薄荷之夏采纳,获得10
6秒前
Joyguo完成签到,获得积分20
7秒前
阿程发布了新的文献求助10
8秒前
霉小欧完成签到,获得积分10
8秒前
疯狂的虔完成签到,获得积分10
10秒前
11秒前
tao发布了新的文献求助20
11秒前
11秒前
斯文败类应助甜美的芷采纳,获得10
13秒前
科研通AI5应助punchline采纳,获得10
14秒前
14秒前
紫丁香发布了新的文献求助60
14秒前
14秒前
现代雪柳完成签到 ,获得积分10
14秒前
14秒前
mihaoran发布了新的文献求助10
15秒前
Cc完成签到,获得积分10
15秒前
香蕉觅云应助gzf采纳,获得10
15秒前
15秒前
开心发卡关注了科研通微信公众号
17秒前
等豆宝儿发布了新的文献求助10
17秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826018
求助须知:如何正确求助?哪些是违规求助? 3368368
关于积分的说明 10450432
捐赠科研通 3087859
什么是DOI,文献DOI怎么找? 1698821
邀请新用户注册赠送积分活动 817155
科研通“疑难数据库(出版商)”最低求助积分说明 770065