Data-driven photocatalytic degradation activity prediction with Gaussian process

光催化 光降解 背景(考古学) 二氧化钛 均方误差 计算机科学 支持向量机 材料科学 机器学习 催化作用 工程类 化学 化学工程 数学 有机化学 生物 统计 古生物学
作者
Vinky Chow,Raphaël C.‐W. Phan,Anh Cat Le Ngo,Ganesh Krishnasamy,Siang‐Piao Chai
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:161: 848-859 被引量:7
标识
DOI:10.1016/j.psep.2022.03.020
摘要

Photocatalysis has emerged as a powerful technology with beneficial impacts on the fields of science and engineering. To date, most photocatalysis research are experimentally-based that strongly rely on various experimental conditions. As the coronavirus pandemic hit the world in 2020, research and experiments were disrupted in various scientific disciplines. During these unprecedented times, machine learning plays a vital role in the continuity of photocatalysis research, notably for researchers under physical access restrictions. More specifically, machine learning is capable of predicting the photocatalytic efficiency and analysing the photocatalytic activity . In recent work, it was demonstrated that a Support Vector Regression (SVR) model succeeded in predicting the efficiency of methyl tert-butyl ether (MTBE) photodegradation using titanium dioxide (TiO 2 ) as a photocatalyst , achieving a Root Mean Square Error (RMSE) of 5%. In this work, we investigate the applicability of the Gaussian Process (GP) technique to predict the photodegradation efficiency of contaminants catalyzed by pure and doped-titanium dioxide (TiO 2 ); and we compare their performance with the current state-of-the-art SVR. Within this context, we discuss the foundations of both the machine learning models, as well as demonstrate how photocatalysis researchers can apply them to solving relevant problems in the field of photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵笙完成签到,获得积分10
刚刚
1秒前
snowball发布了新的文献求助10
1秒前
苦逼大师兄完成签到,获得积分10
1秒前
2秒前
Panchael完成签到,获得积分10
3秒前
3秒前
任性铅笔完成签到 ,获得积分10
4秒前
5秒前
bkagyin应助燕燕于飞采纳,获得10
7秒前
FashionBoy应助NL采纳,获得10
7秒前
7秒前
7秒前
光影发布了新的文献求助10
8秒前
华仔应助avenue采纳,获得10
8秒前
菠萝冰棒发布了新的文献求助10
8秒前
9秒前
11111111完成签到,获得积分10
9秒前
Mandy完成签到,获得积分10
9秒前
yue完成签到,获得积分10
12秒前
共享精神应助啊哈哈哈采纳,获得10
12秒前
12秒前
慕燕琼完成签到,获得积分10
13秒前
与闲完成签到,获得积分10
14秒前
老迟到的秋完成签到,获得积分10
14秒前
Chnious完成签到,获得积分20
14秒前
15秒前
思源应助跳跃的小松鼠采纳,获得10
15秒前
内向宛凝完成签到,获得积分20
15秒前
15秒前
Dream完成签到 ,获得积分10
16秒前
善学以致用应助Robe采纳,获得10
16秒前
NexusExplorer应助sc采纳,获得10
18秒前
难过友易发布了新的文献求助10
19秒前
内向宛凝发布了新的文献求助10
20秒前
李爱国应助小郑不过柱子采纳,获得10
20秒前
22秒前
22秒前
23秒前
难过友易完成签到,获得积分20
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785574
求助须知:如何正确求助?哪些是违规求助? 3331057
关于积分的说明 10249840
捐赠科研通 3046463
什么是DOI,文献DOI怎么找? 1672081
邀请新用户注册赠送积分活动 800976
科研通“疑难数据库(出版商)”最低求助积分说明 759907