Interpretable Machine Learning–Based Prediction of Intraoperative Cerebrospinal Fluid Leakage in Endoscopic Transsphenoidal Pituitary Surgery: A Pilot Study

逻辑回归 脑脊液漏 医学 置信区间 经蝶手术 接收机工作特性 机器学习 外科 人工智能 脑脊液 内科学 计算机科学 垂体腺瘤 腺瘤
作者
Pier Paolo Mattogno,Valerio Maria Caccavella,Martina Giordano,Quintino Giorgio D’Alessandris,Sabrina Chiloiro,Leonardo Tariciotti,Alessandro Olivi,Liverana Lauretti
出处
期刊:Journal of neurological surgery [Georg Thieme Verlag KG]
卷期号:83 (05): 485-495 被引量:11
标识
DOI:10.1055/s-0041-1740621
摘要

Abstract Purpose Transsphenoidal surgery (TSS) for pituitary adenomas can be complicated by the occurrence of intraoperative cerebrospinal fluid (CSF) leakage (IOL). IOL significantly affects the course of surgery predisposing to the development of postoperative CSF leakage, a major source of morbidity and mortality in the postoperative period. The authors trained and internally validated the Random Forest (RF) prediction model to preoperatively identify patients at high risk for IOL. A locally interpretable model-agnostic explanations (LIME) algorithm is employed to elucidate the main drivers behind each machine learning (ML) model prediction. Methods The data of 210 patients who underwent TSS were collected; first, risk factors for IOL were identified via conventional statistical methods (multivariable logistic regression). Then, the authors trained, optimized, and audited a RF prediction model. Results IOL reported in 45 patients (21.5%). The recursive feature selection algorithm identified the following variables as the most significant determinants of IOL: Knosp's grade, sellar Hardy's grade, suprasellar Hardy's grade, tumor diameter (on X, Y, and Z axes), intercarotid distance, and secreting status (nonfunctioning and growth hormone [GH] secreting). Leveraging the predictive values of these variables, the RF prediction model achieved an area under the curve (AUC) of 0.83 (95% confidence interval [CI]: 0.78; 0.86), significantly outperforming the multivariable logistic regression model (AUC = 0.63). Conclusion A RF model that reliably identifies patients at risk for IOL was successfully trained and internally validated. ML-based prediction models can predict events that were previously judged nearly unpredictable; their deployment in clinical practice may result in improved patient care and reduced postoperative morbidity and healthcare costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
阿邴完成签到 ,获得积分10
刚刚
vvvv11发布了新的文献求助10
1秒前
1秒前
天天快乐应助顺心的冬莲采纳,获得10
2秒前
happen完成签到,获得积分10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
酷炫芷珊发布了新的文献求助10
4秒前
4秒前
11发布了新的文献求助10
4秒前
炖地瓜完成签到 ,获得积分10
4秒前
活着arcsin应助yi采纳,获得10
5秒前
6秒前
WYK完成签到 ,获得积分10
6秒前
7秒前
小李完成签到,获得积分10
7秒前
8秒前
8秒前
浮浮世世发布了新的文献求助10
9秒前
Orange应助jdjf采纳,获得10
9秒前
花开富贵发布了新的文献求助10
10秒前
10秒前
yimax发布了新的文献求助10
11秒前
大模型应助寻寻采纳,获得10
11秒前
14秒前
上官若男应助酷炫芷珊采纳,获得10
14秒前
火辣蛤蟆完成签到,获得积分10
15秒前
gstaihn发布了新的文献求助10
15秒前
小丸子发布了新的文献求助10
17秒前
CipherSage应助大头麦穗鱼采纳,获得30
17秒前
CodeCraft应助沉默迎松采纳,获得10
18秒前
火辣蛤蟆发布了新的文献求助10
18秒前
丘比特应助大雄采纳,获得10
19秒前
19秒前
19秒前
英姑应助zhuohui采纳,获得10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738229
求助须知:如何正确求助?哪些是违规求助? 5376051
关于积分的说明 15337229
捐赠科研通 4881308
什么是DOI,文献DOI怎么找? 2623439
邀请新用户注册赠送积分活动 1572148
关于科研通互助平台的介绍 1529023