Assessing site-specific PEGylation of TEM-1 β-lactamase with cell-free protein synthesis and coarse-grained simulation

聚乙二醇化 化学 蛋白质工程 PEG比率 组合化学 生物物理学 计算机科学 生物系统 聚乙二醇 生物化学 生物 财务 经济
作者
Emily Zhao,Mehran Soltani,Addison K. Smith,J. Porter Hunt,Thomas A. Knotts,Bradley C. Bundy
出处
期刊:Journal of Biotechnology [Elsevier]
卷期号:345: 55-63 被引量:4
标识
DOI:10.1016/j.jbiotec.2021.12.016
摘要

PEGylation is a broadly used strategy to enhance the pharmacokinetic properties of therapeutic proteins. It is well established that the location and extent of PEGylation have a significant impact on protein properties. However, conventional PEGylation techniques have limited control over PEGylation sites. Emerging site-specific PEGylation technology provides control of PEG placement by conjugating PEG polymers via click chemistry reaction to genetically encoded non-canonical amino acids. Unfortunately, a method to rapidly determine the optimal PEGylation location has yet to be established. Here we seek to address this challenge. In this work, coarse-grained molecular dynamic simulations are paired with high-throughput experimental screening utilizing cell-free protein synthesis to investigate the effect of site-specific PEGylation on the two-state folder protein TEM-1 β-lactamase. Specifically, the conjugation efficiency, thermal stability, and enzymatic activity are studied for the enzyme PEGylated at several different locations. The results of this analysis confirm that the physical properties of the PEGylated protein vary considerably with PEGylation site and that traditional design recommendations are insufficient to predict favorable PEGylation sites. In this study, the best predictor of the most favorable conjugation site is coarse-grained simulation. Thus, we propose a dual combinatorial screening approach in which coarse-grained molecular simulation informs site selection for high-throughput experimental verification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得30
1秒前
Owen应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
刘桉岐发布了新的文献求助10
1秒前
LXY应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
LXY应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
LXY应助科研通管家采纳,获得10
1秒前
喜马拉雅完成签到 ,获得积分10
2秒前
3秒前
3秒前
Robin发布了新的文献求助10
3秒前
香蕉觅云应助小荣采纳,获得10
4秒前
李健的小迷弟应助执念采纳,获得10
4秒前
wtian1221应助jerry采纳,获得50
5秒前
子车代芙完成签到,获得积分10
6秒前
6秒前
深情安青应助cheems采纳,获得10
7秒前
清爽代芹完成签到,获得积分10
8秒前
124应助一只小鲨鱼采纳,获得10
9秒前
9秒前
10秒前
Owen应助ll采纳,获得10
10秒前
10秒前
希望天下0贩的0应助ll采纳,获得10
10秒前
俊秀的冬灵完成签到,获得积分10
13秒前
周敏杰发布了新的文献求助10
13秒前
Nniu完成签到 ,获得积分10
14秒前
14秒前
枯叶蝶发布了新的文献求助20
15秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672