亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding the Degradation Mechanisms of Lithium Ion Batteries Using in-Situ Multi-Scale Diffraction Techniques

材料科学 尖晶石 阴极 容量损失 锂(药物) 电池(电) 化学工程 电化学 降级(电信) 微晶 纳米技术 电极 化学 冶金 功率(物理) 计算机科学 内分泌学 物理 医学 量子力学 电信 物理化学 工程类
作者
Alice V. Llewellyn,Andrew S. Leach,Isabella Mombrini,Alessia Matruglio,Jiecheng Diao,Chun Tan,Thomas M. M. Heenan,Ian Robinson,Dan J. L. Brett,Rhodri Jervis,Paul R. Shearing
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (2): 177-177
标识
DOI:10.1149/ma2022-012177mtgabs
摘要

Advanced Li-ion batteries adopting new cathode chemistries are required for the successful widespread transition to electric vehicles (EVs) and renewable energy sources, aiming for high energy density, long cycle life, and good rate capability. Commercial candidates for EV batteries include Ni-rich Li(Ni x Mn y Co 1−x-y )O 2 (NMC) cathodes, with Ni:Mn:Co ratios of 8:1:1 (NMC811) and higher. These are favored because of their high specific capacity (~ 200 mAh g -1 )and reduced cobalt content. Despite all of the advantages, these materials suffer from a range of degradation modes, many of which are associated with the redox and crystallographic behavior at high states of charge. In particular, Ni-rich cathodes suffer from several limitations, such as rapid capacity fade in comparison to NMC stoichiometries with lower Ni content. In addition, they also have a lower onset voltage for oxygen release and subsequent surface reconstruction leading to the formation of spinel and rock salt phases which impede (de)lithiation and therefore the achievable capacity of the cell. 1 Crystallographic properties of electrode materials are intrinsically linked to the electrochemical performance of the cell. NMC materials suffer from anisotropic changes in the crystal structure during cycling which induces strain and leads to issues such as crack formation, expediting degradation. One method to tackle capacity fade is to switch to single-crystal morphologies (particle size 1-3 μm) which have better mechanical stability than conventional polycrystalline morphologies (secondary agglomerate particles ~ 10 μm made up of primary particles which are 100 nm – 1 μm in size) and have less propensity to form extensive rock-salt layers. It is thought that the single-crystal morphology helps to reduce stress in the material as the anisotropic stress in polycrystalline cathodes is concentrated at grain boundaries. However, there is still a limited understanding of the subtle mechanistic differences between the two materials during cycling. 2 A multi-scale approach is required to gain a more comprehensive understanding of the degradation mechanisms at play and how they initiate and propagate. In this work, synchrotron diffraction methods were employed at the crystal, particle and cell scale using a variety of techniques including in-situ Bragg Coherent Diffraction Imaging (BCDI), 3D-XRD and operando high-resolution XRD. Intra-particle, inter-particle and electrode level heterogeneities were observed during cycling, both in pristine and aged samples. It is believed that these heterogeneities accelerate the loss of performance at the cell level by inducing crack formation which can then be observed in X-ray computed tomography data acquired in simultaneous lab studies. The overarching goal of these investigations is to add to the understanding of complex degradation mechanisms for Ni-rich layered transition metal oxide cathodes, ultimately aiding in the informed development of future battery electrode materials. References: 1] Xu, C. et al., Phase Behaviour during Electrochemical Cycling of Ni‐Rich Cathode Materials for Li‐Ion Batteries. Adv. Energy Mater. 2021, 11, 2003404. 2] Yin, S. et al., Fundamental and solutions of microcracks in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83, 105854.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Criminology34应助无奈的迎天采纳,获得10
11秒前
13秒前
zly完成签到 ,获得积分0
19秒前
Wenfeifei发布了新的文献求助10
23秒前
Hello应助灵巧涵雁采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
稳重香芦完成签到 ,获得积分10
39秒前
Wenfeifei发布了新的文献求助10
44秒前
哈哈发布了新的文献求助10
45秒前
49秒前
灵巧涵雁发布了新的文献求助10
53秒前
Wenfeifei发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Wenfeifei完成签到,获得积分10
1分钟前
郭泓嵩完成签到,获得积分10
1分钟前
优美香露发布了新的文献求助10
2分钟前
优美香露发布了新的文献求助80
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
2分钟前
延迟整流钾电流完成签到,获得积分10
2分钟前
3分钟前
李爱国应助优美香露采纳,获得80
3分钟前
3分钟前
3分钟前
优美香露发布了新的文献求助80
3分钟前
思源应助优美香露采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
优美香露发布了新的文献求助10
4分钟前
ZHANG完成签到,获得积分10
4分钟前
yys完成签到,获得积分10
4分钟前
yys10l完成签到,获得积分10
4分钟前
FU发布了新的文献求助10
4分钟前
4分钟前
4分钟前
优美香露发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657970
求助须知:如何正确求助?哪些是违规求助? 4815720
关于积分的说明 15080738
捐赠科研通 4816298
什么是DOI,文献DOI怎么找? 2577247
邀请新用户注册赠送积分活动 1532274
关于科研通互助平台的介绍 1490870