冰期
全球变暖
自然地理学
地质学
气候变化
环境科学
北极
气候学
海洋学
地理
地貌学
作者
Guoqing Zhang,Tandong Yao,Hongjie Xie,Weicai Wang,Wei Yang
标识
DOI:10.1016/j.gloplacha.2015.05.013
摘要
article i nfo No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram- Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study, the first glacial lake in- ventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data. Glacial lake spatial distributions, corresponding areas and temporal changes were examined. The significant results are as follows. (1) There were 4602, 4981, and 5701 glacial lakes (N0.003 km 2 ) covering areas of 553.9 ± 90, 581.2 ± 97, and 682.4 ± 110 km 2 in ~1990, 2000, and 2010, respectively; these lakes are primarily located in the Brahmaputra (39%),Indus (28%), and AmuDarya (10%) basins. (2) Small lakes (b0.2 km 2 ) are more sensitive to climate changes. (3) Lakes closer to glaciers and at higher altitudes, particularly thoseconnected to glacier ter- mini, have undergone larger area changes. (4) Glacier-fed lakes are dominant in both quantity and area (N70%) and exhibit faster expansion trends overall compared to non-glacier-fed lakes. We conclude that glacier meltwa- ter may play a dominant role in the areal expansion of most glacial lakes in the Third Pole. In addition, the pat- terns of the glacier-fed lakes correspond well with warming temperature trends and negative glacier mass balance patterns. This paper presents an important database of glacial lakes and provides a basis for long-term monitoring and evaluation of outburst flood disasters primarily caused by glacial lakes in the Third Pole.
科研通智能强力驱动
Strongly Powered by AbleSci AI