Advances in the biotechnology of hydrogen production with the microalgaChlamydomonas reinhardtii

莱茵衣藻 生物制氢 光合反应器 生化工程 制氢 生物燃料 氢化酶 环境科学 生物技术 化学 生物 工程类 生物化学 基因 突变体 有机化学
作者
Giuseppe Torzillo,Alberto Scoma,Cecilia Faraloni,Luca Giannelli
出处
期刊:Critical Reviews in Biotechnology [Taylor & Francis]
卷期号:35 (4): 485-496 被引量:87
标识
DOI:10.3109/07388551.2014.900734
摘要

Biological hydrogen production is being evaluated for use as a fuel, since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific energy content. The basic advantages of biological hydrogen production over other "green" energy sources are that it does not compete for agricultural land use, and it does not pollute, as water is the only by-product of the combustion. These characteristics make hydrogen a suitable fuel for the future. Among several biotechnological approaches, photobiological hydrogen production carried out by green microalgae has been intensively investigated in recent years. A select group of photosynthetic organisms has evolved the ability to harness light energy to drive hydrogen gas production from water. Of these, the microalga Chlamydomonas reinhardtii is considered one of the most promising eukaryotic H2 producers. In this model microorganism, light energy, H2O and H2 are linked by two excellent catalysts, the photosystem 2 (PSII) and the [FeFe]-hydrogenase, in a pathway usually referred to as direct biophotolysis. This review summarizes the main advances made over the past decade as an outcome of the discovery of the sulfur-deprivation process. Both the scientific and technical barriers that need to be overcome before H2 photoproduction can be scaled up to an industrial level are examined. Actual and theoretical limits of the efficiency of the process are also discussed. Particular emphasis is placed on algal biohydrogen production outdoors, and guidelines for an optimal photobioreactor design are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼完成签到,获得积分20
1秒前
1秒前
小魏哥哥完成签到,获得积分10
1秒前
青易完成签到,获得积分10
2秒前
zhk发布了新的文献求助10
2秒前
李爱国应助踏实的冷松采纳,获得10
2秒前
胖飞飞发布了新的文献求助10
3秒前
3秒前
3秒前
xionghaizi发布了新的文献求助10
4秒前
葡萄干儿发布了新的文献求助10
4秒前
小葵发布了新的文献求助10
5秒前
5秒前
华仔应助WFLLL采纳,获得10
6秒前
超帅方盒完成签到,获得积分10
6秒前
hahaha发布了新的文献求助10
7秒前
7秒前
7秒前
猪猪hero发布了新的文献求助10
7秒前
8秒前
大雄的梦想是什么完成签到 ,获得积分10
8秒前
匀速前行完成签到,获得积分10
9秒前
D33sama发布了新的文献求助10
9秒前
JeremyLiu完成签到,获得积分10
9秒前
9秒前
深情安青应助YooM采纳,获得10
10秒前
10秒前
10秒前
long完成签到,获得积分10
10秒前
66完成签到,获得积分10
11秒前
steve完成签到,获得积分0
11秒前
12秒前
12秒前
12秒前
郭文博完成签到,获得积分20
12秒前
12秒前
猪猪hero发布了新的文献求助10
12秒前
麦凯发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Information Security and Cryptology Inscrypt 2024 Part II 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827894
求助须知:如何正确求助?哪些是违规求助? 3370158
关于积分的说明 10461474
捐赠科研通 3089981
什么是DOI,文献DOI怎么找? 1700144
邀请新用户注册赠送积分活动 817704
科研通“疑难数据库(出版商)”最低求助积分说明 770403