清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Simple fully convolutional network to estimate Brain Age

简单(哲学) 计算机科学 卷积神经网络 人工智能 认识论 哲学
作者
Ninad Aithal,Neelam Sinha
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S2)
标识
DOI:10.1002/alz.088019
摘要

Abstract Background Data‐driven methods, particularly deep learning, are transforming neuroimaging by accurately estimating Brain Age using diverse modalities. Discrepan‐ cies between predicted and actual age unveil potential health risks. Utilizing a training set of healthy subjects, a regression algorithm correlates brain features to age, allowing inference for unseen patients. Deviations, termed brain age delta, correlate with brain health. This Simple fully convolutional network (SFCN) model draws inspiration from the work of Peng H et al. and is trained on the openly available ADNI dataset. Method We trained the SFCN model on 908 MRI skull stripped and linearly registered MRI images using fsl belonging to Cognitively normal (CN) group, where each scan was of dimensions 1×91×109×91. The SFCN model has 7 blocks, The first five blocks extract features rapidly, reducing dimensions, and the sixth block introduces non‐linearity, while the final block functions as dense layers to capture the feature map. The model is trained with Mean Squared Error loss with Adam optimiser and early stopping. Result The dataset exhibited an age range from 56 to 96 years, with 71 being the mode. The model achieved a Mean Absolute Error (MAE) of 2.23 years on the validation set and 2.22 years on the test set, comparable to State‐of‐the‐ Art (SOTA) techniques. Applying the same model to Alzheimer’s Disease (AD) subjects, totaling 396, yielded a MAE of 6.89 years. Conclusion Accurate brain age prediction, revealing disparities between chronological age and brain age, serves as an early marker for diseases. This approach, showcasing a MAE of 2.22 years on T1‐weighted MRI images with minimal preprocessing, holds promise for precise brain age prediction, contributing to early disease detection and intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xieyusen发布了新的文献求助10
刚刚
1秒前
小静完成签到 ,获得积分10
4秒前
10秒前
ESC惠子子子子子完成签到 ,获得积分10
15秒前
水母大王发布了新的文献求助10
17秒前
Wangyingjie5完成签到,获得积分10
18秒前
谢陈完成签到 ,获得积分10
20秒前
Lucas应助苏木采纳,获得10
21秒前
珍惜完成签到,获得积分0
30秒前
33秒前
34秒前
开朗白开水完成签到 ,获得积分10
36秒前
38秒前
蔡勇强完成签到 ,获得积分10
39秒前
Xieyusen发布了新的文献求助10
39秒前
Tine发布了新的文献求助10
39秒前
40秒前
laber完成签到,获得积分0
41秒前
苏木发布了新的文献求助10
43秒前
顺利问玉完成签到 ,获得积分10
47秒前
Tine完成签到,获得积分10
47秒前
Xieyusen完成签到,获得积分10
48秒前
水母大王完成签到,获得积分10
1分钟前
1分钟前
追寻梦之完成签到 ,获得积分10
1分钟前
1分钟前
Philthee发布了新的文献求助10
1分钟前
赘婿应助苏木采纳,获得10
1分钟前
火山完成签到 ,获得积分10
1分钟前
Acid完成签到 ,获得积分10
1分钟前
yyx完成签到 ,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
20240901完成签到,获得积分10
1分钟前
kdc完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
啦啦啦啦完成签到 ,获得积分10
1分钟前
1分钟前
Guo完成签到 ,获得积分0
1分钟前
july13完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859