生成语法
语言学
心理学
沟通
计算机科学
认知心理学
认知科学
人工智能
哲学
作者
Lin Wang,Xiaocui Yang,Shi Feng,Daling Wang,Yifei Zhang
出处
期刊:Cornell University - arXiv
日期:2024-11-01
标识
DOI:10.48550/arxiv.2411.02430
摘要
Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically uses clause selection methods to locate the reason utterance, without providing a detailed explanation of the emotional causes. In this paper, we propose a new task, \textbf{M}ultimodal \textbf{C}onversation \textbf{E}motion \textbf{C}ause \textbf{E}xplanation (MCECE), aiming to generate a detailed explanation of the emotional cause to the target utterance within a multimodal conversation scenario. Building upon the MELD dataset, we develop a new dataset (ECEM) that integrates video clips with detailed explanations of character emotions, facilitating an in-depth examination of the causal factors behind emotional expressions in multimodal conversations.A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net significantly outperforms several excellent large language model baselines. Code and dataset are available at \url{https://github.com/3222345200/ECEMdataset.git}
科研通智能强力驱动
Strongly Powered by AbleSci AI