An enhanced empirical Fourier decomposition method for bearing fault diagnosis

断层(地质) 方位(导航) 计算机科学 干扰(通信) 傅里叶变换 算法 噪音(视频) 谐波 希尔伯特-黄变换 电子工程 数学 人工智能 工程类 白噪声 电信 电压 图像(数学) 电气工程 频道(广播) 地质学 数学分析 地震学
作者
Danchen Zhu,Guoqiang Liu,Xingyu Wu,Bolong Yin
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (2): 903-923 被引量:12
标识
DOI:10.1177/14759217231178653
摘要

To address the problem that bearing fault signals are usually contaminated by strong background interference due to multiple structures and complex transmission paths, which affects accurate fault feature extraction, an enhanced empirical Fourier decomposition technique was proposed in this paper. First, in order to weaken the influence of transmission path, the trend-line-extraction-based method was utilized in advance, which suppressed the signal distortion and background noise interference. Then, to achieve the appropriate parameter for the empirical Fourier decomposition, the correlation-coefficient-based decomposition number selection approach was constructed to avoid the existence of irrelevant modal functions. The band improvement strategy was proposed to reduce the invalid frequency bands with too narrow bandwidth during the decomposition process, the weighted harmonics significant index was utilized as the target, and the optimal modal components were also determined. Last, the fast Fourier transform was employed, and the bearing fault signatures were accurately detected. The simulation and experimental bearing fault signals were used for analysis; with the help of some comparisons, the analyzed results show that this method can effectively extract the fault characteristics of rolling element bearing from strong background interference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助倪妮采纳,获得10
刚刚
刚刚
1秒前
1秒前
Eunice发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助150
1秒前
orixero应助ninghan采纳,获得10
1秒前
桐桐应助zorn采纳,获得10
1秒前
Kimberlyn完成签到 ,获得积分10
2秒前
Orange应助一直采纳,获得10
2秒前
2秒前
李喵喵同学完成签到,获得积分10
2秒前
2秒前
归尘应助lym97采纳,获得30
2秒前
2秒前
3秒前
愤怒的千凝完成签到,获得积分10
3秒前
焦爽发布了新的文献求助10
3秒前
多米发布了新的文献求助10
4秒前
whitekitten发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
xiaofeixia完成签到 ,获得积分10
6秒前
7秒前
甜瓜瓜发布了新的文献求助10
7秒前
芽芽鸭发布了新的文献求助20
7秒前
8秒前
念所三旬完成签到,获得积分10
8秒前
8秒前
谨慎语梦发布了新的文献求助30
8秒前
欧小仙完成签到,获得积分10
8秒前
9秒前
9秒前
一一完成签到,获得积分10
9秒前
10秒前
秋子发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085703
求助须知:如何正确求助?哪些是违规求助? 4301785
关于积分的说明 13405360
捐赠科研通 4126726
什么是DOI,文献DOI怎么找? 2260000
邀请新用户注册赠送积分活动 1264125
关于科研通互助平台的介绍 1198313