Suicide risk stratification among major depressed patients based on a machine learning approach and whole-brain functional connectivity

重性抑郁障碍 自杀意念 支持向量机 特征选择 毒物控制 心理学 萧条(经济学) 队列 医学 机器学习 人工智能 精神科 自杀预防 计算机科学 内科学 认知 急诊医学 宏观经济学 经济
作者
Shengli Chen,Xiaojing Zhang,Shiu‐Ru Lin,Yingli Zhang,Ziyun Xu,Yanqing Li,Manxi Xu,Gangqiang Hou,Yingwei Qiu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:322: 173-179 被引量:5
标识
DOI:10.1016/j.jad.2022.11.022
摘要

Suicide risk stratification and individual-level prediction among major depressive disorder (MDD) is important but unrecognized. Here, we construct models to detect suicidality in MDD using machine learning (ML) and whole-brain functional connectivity (FC).A cross-sectional assessment was conducted on 200 subjects, including 126 MDD with high suicide risk (HSR; 73 patients with suicidal ideation [SI], 53 patients with suicidal attempts [SA]), 36 patients with low suicide risk (LSR) and 38 healthy controls (HCs). Whole-brain FC features were calculated, the least absolute shrinkage and selection operator (LASSO) method was used for feature selection. A support vector machine (SVM) was performed to build models to distinguish MDD from HCs, and for suicide risk stratification among MDD. Leave-one-out cross-validation (LOOCV) was performed for validation.The models constructed using SVM on whole-brain FC had powerful classification efficiency in screening MDD from HCs (accuracy = 88.50 %), and in suicide risk stratification among MDD patients (with accuracy = 84.56 % and 74.60 % in classifying patients with HSR or LSR, and SA or SI, respectively). Subsequent analysis demonstrated that intra-network dysconnectivity in the sensorimotor network and inter-network dysconnectivity between the default and dorsal attention network could characterize HSR and SA in MDD, separately.This study was a single center cohort study without external validation.These findings indicate ML approaches are useful in suicide risk stratification among MDD based on whole-brain FC, which may help to identify individuals with different suicide risks in MDD and provide an individual-level prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
oboy完成签到 ,获得积分10
7秒前
hhan完成签到,获得积分10
7秒前
陈少华发布了新的文献求助10
10秒前
风趣的灵枫完成签到 ,获得积分10
13秒前
跳跃的白云完成签到 ,获得积分10
14秒前
杰桑的西地那非完成签到 ,获得积分10
16秒前
大轩完成签到 ,获得积分10
18秒前
朱迪完成签到 ,获得积分10
20秒前
孤傲的静脉完成签到,获得积分10
21秒前
桂花完成签到 ,获得积分10
21秒前
优雅的母鸡完成签到,获得积分10
24秒前
汉堡包应助mimilv采纳,获得10
25秒前
光亮乘云完成签到,获得积分10
26秒前
hdx完成签到 ,获得积分10
27秒前
27秒前
Warming完成签到 ,获得积分10
28秒前
无限的三问完成签到 ,获得积分10
29秒前
朱佳宁完成签到 ,获得积分10
30秒前
忧虑的花卷完成签到,获得积分10
31秒前
蓝色条纹衫完成签到 ,获得积分10
34秒前
35秒前
稳重荣轩完成签到,获得积分10
37秒前
37秒前
mimilv发布了新的文献求助10
38秒前
wei完成签到 ,获得积分10
39秒前
MRJJJJ完成签到,获得积分10
40秒前
CodeCraft应助bombing2048采纳,获得10
40秒前
珍惜完成签到,获得积分0
40秒前
稳重荣轩发布了新的文献求助200
43秒前
哇哈完成签到 ,获得积分10
43秒前
levoglucosan完成签到,获得积分10
44秒前
cavendipeng完成签到,获得积分10
45秒前
知非完成签到 ,获得积分10
46秒前
jhcraul完成签到,获得积分0
49秒前
徐晓婧完成签到 ,获得积分10
51秒前
52秒前
mimilv完成签到,获得积分20
53秒前
cdercder应助科研通管家采纳,获得10
54秒前
cdercder应助科研通管家采纳,获得10
54秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402490
捐赠科研通 3077249
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743