材料科学
延展性(地球科学)
合金
纳米压痕
难熔金属
氧化物
成形性
脆化
缩进
冶金
可塑性
相(物质)
复合材料
蠕动
化学
有机化学
作者
David Beaudry,Michael J. Waters,Gianna M. Valentino,Daniel L. Foley,Elaf Anber,Yevgeny Rakita,Charlie J. Brandenburg,Jean‐Philippe Couzinié,Loïc Perrière,Toshihiro Aoki,Keith E. Knipling,Patrick G. Callahan,Benjamin W. Y. Redemann,Tyrel M. McQueen,Elizabeth J. Opila,James M. Rondinelli,Mitra L. Taheri
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2024-09-20
卷期号:10 (38)
被引量:1
标识
DOI:10.1126/sciadv.ado9697
摘要
Refractory multiprincipal element alloys (RMPEAs) are potential successors to incumbent high-temperature structural alloys, although efforts to improve oxidation resistance with large additions of passivating elements have led to embrittlement. RMPEAs containing group IV and V elements have a balance of properties including moderate ductility, low density, and the necessary formability. We find that oxidation of group IV-V RMPEAs induces hierarchical heterogeneities, ranging from nanoscale interstitial complexes to tertiary phases. This microstructural hierarchy considerably enhances hardness without indentation cracking, with values ranging between 12.1 and 22.6 GPa from the oxide-adjacent metal to the surface oxides, a 3.7 to 6.8× increase over the interstitial-free alloy. Our fundamental understanding of the oxygen influence on phase formation informs future alloy design to enhance oxidation resistance and obtain exceptional hardness while preserving plasticity.
科研通智能强力驱动
Strongly Powered by AbleSci AI