Noisy Label Removal for Partial Multi-Label Learning

分类器(UML) 计算机科学 人工智能 杠杆(统计) 模式识别(心理学) 标记数据 机器学习 二元分类 数据挖掘 支持向量机
作者
Fuchao Yang,Yuheng Jia,Hui Liu,Yongqiang Dong,Junhui Hou
标识
DOI:10.1145/3637528.3671677
摘要

This paper addresses the problem of partial multi-label learning (PML), a challenging weakly supervised learning framework, where each sample is associated with a candidate label set comprising both ground-true labels and noisy labels. We theoretically reveal that an increased number of noisy labels in the candidate label set leads to an enlarged generalization error bound, consequently degrading the classification performance. Accordingly, the key to solving PML lies in accurately removing the noisy labels within the candidate label set. To achieve this objective, we leverage prior knowledge about the noisy labels in PML, which suggests that they only exist within the candidate label set and possess binary values. Specifically, we propose a constrained regression model to learn a PML classifier and select the noisy labels. The constraints of the model strictly enforce the location and value of the noisy labels. Simultaneously, the supervision information provided by the candidate label set is unreliable due to the presence of noisy labels. In contrast, the non-candidate labels of a sample precisely indicate the classes to which the sample does not belong. To aid in the selection of noisy labels, we construct a competitive classifier based on the non-candidate labels. The PML classifier and the competitive classifier form a competitive relationship, encouraging mutual learning. We formulate the proposed model as a discrete optimization problem to effectively remove the noisy labels, and we solve it using an alternative algorithm. Extensive experiments conducted on 6 real-world partial multi-label data sets and 7 synthetic data sets, employing various evaluation metrics, demonstrate that our method significantly outperforms state-of-the-art PML methods. The code implementation is publicly available at https://github.com/Yangfc-ML/NLR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ateng68完成签到,获得积分20
1秒前
vvvvyl发布了新的文献求助10
1秒前
LL发布了新的文献求助10
1秒前
等风来完成签到,获得积分10
1秒前
hyz完成签到,获得积分10
2秒前
白白完成签到,获得积分10
2秒前
2秒前
2秒前
waky发布了新的文献求助10
3秒前
lx发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
烂漫青槐应助薄荷采纳,获得10
4秒前
无油烟完成签到,获得积分10
4秒前
英姑应助feezy采纳,获得10
4秒前
木叶完成签到 ,获得积分10
4秒前
田様应助维尼熊采纳,获得10
5秒前
蜡笔小新完成签到,获得积分10
5秒前
Owen应助清茶旧友采纳,获得10
5秒前
小星历险记完成签到 ,获得积分10
5秒前
5秒前
纯真大象发布了新的文献求助10
5秒前
伶俐老头完成签到,获得积分20
6秒前
liupan002完成签到,获得积分10
6秒前
CipherSage应助愉快怀绿采纳,获得10
6秒前
7秒前
cdercder应助王博雅采纳,获得30
7秒前
逸云完成签到,获得积分20
7秒前
研友_851KE8发布了新的文献求助10
7秒前
五山第一院士完成签到,获得积分10
8秒前
科研通AI5应助ark861023采纳,获得30
8秒前
BREEZE完成签到,获得积分10
8秒前
逸云发布了新的文献求助10
10秒前
科研通AI5应助小柴乖乖采纳,获得10
10秒前
11秒前
刘星宇发布了新的文献求助10
11秒前
LL完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838094
求助须知:如何正确求助?哪些是违规求助? 3380365
关于积分的说明 10514040
捐赠科研通 3099948
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772772