MMPA: A modified marine predator algorithm for 3D UAV path planning in complex environments with multiple threats

计算机科学 水准点(测量) 稳健性(进化) 数学优化 运动规划 算法 人工智能 机器人 数学 生物化学 化学 大地测量学 基因 地理
作者
Lixin Lyu,Fan Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:257: 124955-124955 被引量:2
标识
DOI:10.1016/j.eswa.2024.124955
摘要

In this paper, we propose a modified Marine Predators Algorithm (MPA) for global optimization in complex environments with multiple threats, specifically targeting unmanned aerial vehicle (UAV) path planning. Addressing the shortcomings of the original MPA, we introduce four innovative strategies, including adaptive parameter control, nonlinear inertia weight, Cauchy mutation operator-based randomization, and improved differential mutation strategy. These strategies not only significantly enhance the convergence speed while ensuring algorithm precision but also provide effective avenues for enhancing the performance of MPA. We successfully apply these modifications to UAV path planning scenarios in complex environments. To validate the proposed algorithm, we conduct comprehensive tests using 23 classical benchmark functions and compare its performance with six well-known algorithms. The experimental results demonstrate that MMPA excels in numerical optimization problems with various modes, exhibiting superior optimization performance. Moreover, in eight 3D Unmanned Aerial Vehicle (UAV) 22 path planning scenarios with diverse complexities, we demonstrate the superiority and robustness of MMPA in tackling practical problems. By employing the four innovative strategies, MMPA achieves notable performance improvements in complex tasks, showcasing strong potential for practical applications. Overall, our research not only presents an effective approach to enhance the MPA algorithm's performance but also demonstrates significant advantages in addressing practical problems. These innovative strategies offer valuable insights for advancing the research and application of nature-inspired optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JiaqiDijon完成签到,获得积分10
1秒前
3秒前
5秒前
5秒前
agnessh发布了新的文献求助10
5秒前
丸子鱼完成签到 ,获得积分10
6秒前
莫之白发布了新的文献求助10
7秒前
JY发布了新的文献求助10
8秒前
10秒前
JY完成签到,获得积分10
14秒前
14秒前
chenyu发布了新的文献求助20
15秒前
康谨发布了新的文献求助100
17秒前
17秒前
19秒前
jtj完成签到 ,获得积分10
19秒前
章章完成签到,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
bean应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
zhzzhz应助科研通管家采纳,获得10
21秒前
21秒前
wy.he应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
22秒前
bean应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
wy.he应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
wy.he应助科研通管家采纳,获得10
22秒前
梅哈完成签到 ,获得积分10
22秒前
00完成签到,获得积分10
23秒前
starwan发布了新的文献求助10
23秒前
张张发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776990
求助须知:如何正确求助?哪些是违规求助? 3322387
关于积分的说明 10210034
捐赠科研通 3037721
什么是DOI,文献DOI怎么找? 1666843
邀请新用户注册赠送积分活动 797700
科研通“疑难数据库(出版商)”最低求助积分说明 758012