Improving Prediction of Survival and Progression in Metastatic Non–Small Cell Lung Cancer After Immunotherapy Through Machine Learning of Circulating Tumor DNA

肿瘤科 一致性 内科学 医学 比例危险模型 免疫疗法 肺癌 癌症 机器学习 计算机科学
作者
Haolun Ding,Steven Xu,Yaning Yang,Min Yuan
出处
期刊:JCO precision oncology [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:5
标识
DOI:10.1200/po.23.00718
摘要

PURPOSE To use modern machine learning approaches to enhance and automate the feature extraction from the longitudinal circulating tumor DNA (ctDNA) data and to improve the prediction of survival and disease progression, risk stratification, and treatment strategies for patients with 1L non–small cell lung cancer (NSCLC). MATERIALS AND METHODS Using IMpower150 trial data on patients with untreated metastatic NSCLC treated with atezolizumab and chemotherapies, we developed a machine learning algorithm to extract predictive features from ctDNA kinetics, improving survival and progression prediction. We analyzed kinetic data from 17 ctDNA summary markers, including cell-free DNA concentration, allele frequency, tumor molecules in plasma, and mutation counts. RESULTS Three hundred and ninety-eight patients with ctDNA data (206 in training and 192 in validation) were analyzed. Our models outperformed existing workflow using conventional temporal ctDNA features, raising overall survival (OS) concordance index to 0.72 and 0.71 from 0.67 and 0.63 for C3D1 and C4D1, respectively, and substantially improving progression-free survival (PFS) to approximately 0.65 from the previous 0.54-0.58, a 12%-20% increase. Additionally, they enhanced risk stratification for patients with NSCLC, achieving clear OS and PFS separation. Distinct patterns of ctDNA kinetic characteristics (eg, baseline ctDNA markers, depth of ctDNA responses, and timing of ctDNA clearance, etc) were revealed across the risk groups. Rapid and complete ctDNA clearance appears essential for long-term clinical benefit. CONCLUSION Our machine learning approach offers a novel tool for analyzing ctDNA kinetics, extracting critical features from longitudinal data, improving our understanding of the link between ctDNA kinetics and progression/mortality risks, and optimizing personalized immunotherapies for 1L NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾不努力完成签到,获得积分10
1秒前
科目三应助儒雅怀蕾采纳,获得10
2秒前
2秒前
czb完成签到 ,获得积分10
2秒前
歪歪比比发布了新的文献求助10
3秒前
3秒前
4秒前
彭于晏应助GGGG采纳,获得10
5秒前
zqy发布了新的文献求助10
5秒前
MoMo发布了新的文献求助10
5秒前
6秒前
7秒前
NexusExplorer应助1234采纳,获得10
7秒前
lyx完成签到,获得积分10
8秒前
jackycas发布了新的文献求助10
9秒前
书霂完成签到,获得积分10
10秒前
10秒前
田様应助LULU采纳,获得10
11秒前
小二郎应助哈米伯伯采纳,获得10
12秒前
12秒前
zzf发布了新的文献求助10
12秒前
wop111应助kay采纳,获得10
12秒前
咔什么嚓完成签到,获得积分10
14秒前
清秀爆米花完成签到 ,获得积分10
15秒前
华仔应助阿航采纳,获得10
15秒前
狂野穆完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助20
18秒前
18秒前
笑面客发布了新的文献求助10
18秒前
KYT完成签到,获得积分10
18秒前
19秒前
21秒前
钱钱发布了新的文献求助10
21秒前
努力的小杜完成签到,获得积分10
22秒前
cc发布了新的文献求助10
22秒前
23秒前
酷波er应助kkk采纳,获得30
23秒前
24秒前
雪白胡萝卜完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849603
求助须知:如何正确求助?哪些是违规求助? 4148969
关于积分的说明 12851668
捐赠科研通 3896337
什么是DOI,文献DOI怎么找? 2141589
邀请新用户注册赠送积分活动 1161120
关于科研通互助平台的介绍 1061187