Hybrid firefly algorithm–neural network for battery remaining useful life estimation

萤火虫算法 人工神经网络 估计 萤火虫协议 计算机科学 电池(电) 算法 人工智能 工程类 生物 功率(物理) 动物 物理 系统工程 量子力学 粒子群优化
作者
Zuriani Mustaffa,Mohd Herwan Sulaiman
出处
期刊:Clean energy [Oxford University Press]
卷期号:8 (5): 157-166 被引量:1
标识
DOI:10.1093/ce/zkae060
摘要

Abstract Accurately estimating the remaining useful life (RUL) of batteries is crucial for optimizing maintenance, preventing failures, and enhancing reliability, thereby saving costs and resources. This study introduces a hybrid approach for estimating the RUL of a battery based on the firefly algorithm–neural network (FA–NN) model, in which the FA is employed as an optimizer to fine-tune the network weights and hidden layer biases in the NN. The performance of the FA–NN is comprehensively compared against two hybrid models, namely the harmony search algorithm (HSA)–NN and cultural algorithm (CA)–NN, as well as a single model, namely the autoregressive integrated moving average (ARIMA). The comparative analysis is based mean absolute error (MAE) and root mean squared error (RMSE). Findings reveal that the FA–NN outperforms the HSA–NN, CA–NN, and ARIMA in both employed metrics, demonstrating superior predictive capabilities for estimating the RUL of a battery. Specifically, the FA–NN achieved a MAE of 2.5371 and a RMSE of 2.9488 compared with the HSA–NN with a MAE of 22.0583 and RMSE of 34.5154, the CA–NN with a MAE of 9.1189 and RMSE of 22.4646, and the ARIMA with a MAE of 494.6275 and RMSE of 584.3098. Additionally, the FA–NN exhibits significantly smaller maximum errors at 34.3737 compared with the HSA–NN at 490.3125, the CA–NN at 827.0163, and the ARIMA at 1.16e + 03, further emphasizing its robust performance in minimizing prediction inaccuracies. This study offers important insights into battery health management, showing that the proposed method is a promising solution for precise RUL predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
南山完成签到,获得积分10
1秒前
纯真的半山完成签到,获得积分10
1秒前
顺顺完成签到,获得积分10
1秒前
Monologue完成签到 ,获得积分10
1秒前
Owen应助xh采纳,获得10
2秒前
一万完成签到,获得积分10
2秒前
2秒前
caoyuya123完成签到 ,获得积分10
2秒前
萍子完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
大胆的如凡完成签到,获得积分10
3秒前
脑洞疼应助黑豆子采纳,获得10
4秒前
4秒前
领导范儿应助白英采纳,获得10
4秒前
4秒前
情怀应助清脆的代芹采纳,获得10
5秒前
5秒前
xutong de完成签到,获得积分10
5秒前
完美世界应助WN采纳,获得30
5秒前
Shannon完成签到,获得积分10
5秒前
Jared应助大神牛猪羊采纳,获得10
5秒前
5秒前
5秒前
5秒前
轻松戎完成签到,获得积分10
6秒前
贾克斯发布了新的文献求助10
6秒前
xiaolcj发布了新的文献求助10
6秒前
尹辉发布了新的文献求助10
7秒前
yiqi发布了新的文献求助10
7秒前
锤你发布了新的文献求助10
7秒前
8秒前
生动谷蓝完成签到,获得积分10
8秒前
铃兰发布了新的文献求助10
8秒前
刘娇发布了新的文献求助10
8秒前
万能图书馆应助能干的捕采纳,获得10
8秒前
11111发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769