A novel framework inspired by human behavior for peg-in-hole assembly

PEG比率 纳米技术 计算机科学 材料科学 业务 财务
作者
Peng Guo,Weiyong Si,Chenguang Yang
标识
DOI:10.1108/ria-01-2024-0019
摘要

Purpose The purpose of this paper is to enhance the performance of robots in peg-in-hole assembly tasks, enabling them to swiftly and robustly accomplish the task. It also focuses on the robot’s ability to generalize across assemblies with different hole sizes. Design/methodology/approach Human behavior in peg-in-hole assembly serves as inspiration, where individuals visually locate the hole firstly and then continuously adjust the peg pose based on force/torque feedback during the insertion process. This paper proposes a novel framework that integrate visual servo and adjustment based on force/torque feedback, the authors use deep neural network (DNN) and image processing techniques to determine the pose of hole, then an incremental learning approach based on a broad learning system (BLS) is used to simulate human learning ability, the number of adjustments required for insertion process is continuously reduced. Findings The author conducted experiments on visual servo, adjustment based on force/torque feedback, and the proposed framework. Visual servo inferred the pixel position and orientation of the target hole in only about 0.12 s, and the robot achieved peg insertion with 1–3 adjustments based on force/torque feedback. The success rate for peg-in-hole assembly using the proposed framework was 100%. These results proved the effectiveness of the proposed framework. Originality/value This paper proposes a framework for peg-in-hole assembly that combines visual servo and adjustment based on force/torque feedback. The assembly tasks are accomplished using DNN, image processing and BLS. To the best of the authors’ knowledge, no similar methods were found in other people’s work. Therefore, the authors believe that this work is original.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助王欣采纳,获得10
1秒前
小小完成签到 ,获得积分10
1秒前
zyzoo发布了新的文献求助10
1秒前
1秒前
1秒前
汉堡包应助池寒采纳,获得30
2秒前
Sun完成签到,获得积分10
2秒前
么么儿发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
ji_weiyi发布了新的文献求助10
4秒前
linlinjx完成签到,获得积分20
4秒前
科研小白完成签到,获得积分10
4秒前
5秒前
Je发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
zyzoo完成签到,获得积分10
7秒前
lriye发布了新的文献求助10
7秒前
7秒前
7秒前
xxbo发布了新的文献求助10
7秒前
sugar发布了新的文献求助10
8秒前
超级盼烟发布了新的文献求助10
8秒前
酷酷紫蓝发布了新的文献求助10
8秒前
自觉的涵易给自觉的涵易的求助进行了留言
9秒前
香蕉觅云应助自由保温杯采纳,获得10
9秒前
白大帅气发布了新的文献求助10
10秒前
勤奋的缘郡完成签到,获得积分20
10秒前
10秒前
Jackylee完成签到,获得积分10
10秒前
yzj发布了新的文献求助10
11秒前
思源应助等等采纳,获得10
11秒前
李爱国应助胖denger采纳,获得10
11秒前
果冻卷发布了新的文献求助20
12秒前
DDDD发布了新的文献求助10
12秒前
小刘同学关注了科研通微信公众号
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5171059
求助须知:如何正确求助?哪些是违规求助? 4361544
关于积分的说明 13580366
捐赠科研通 4209019
什么是DOI,文献DOI怎么找? 2308603
邀请新用户注册赠送积分活动 1307895
关于科研通互助平台的介绍 1254743