Cross‐efficiency evaluation of the data envelopment analysis with conflict behaviour and beneficial relationship perspectives

数据包络分析 计算机科学 排名(信息检索) 稳健性(进化) 数据挖掘 秩相关 计量经济学 数学优化 机器学习 数学 生物化学 基因 化学
作者
Hua Zhuang,Xueying Luo
出处
期刊:Expert Systems [Wiley]
卷期号:41 (3)
标识
DOI:10.1111/exsy.13501
摘要

Abstract In data envelopment analysis, cross‐efficiency evaluation stands out as a valuable tool for ranking the effectiveness of decision‐making units (DMUs). However, existing research commonly assume that DMUs are randomly classified as either collaborators or opponents of the evaluated DMUs. Unfortunately, few studies have considered the presence of conflict behaviour and beneficial relationships among DMUs during cross‐efficiency evaluation. To address this research gap, this study proposes an innovative approach. Firstly, the proposed framework incorporates an interval cross‐efficiency environment to accommodate the inherent uncertainty and fuzziness in the efficiency scores of DMUs. Secondly, two definitions, namely task conflict cross‐efficiency and relationship conflict cross‐efficiency, are introduced by combining the characteristics of the interval cross‐efficiency matrix with conflict behaviour. To measure the strength of the conflict between DMUs, a novel measurement method is proposed, forming the foundation for constructing two cross‐efficiency secondary programming models based on conflict behaviour. Thirdly, the Spearman's rank correlation coefficient is employed to measure the strength of beneficial relationships among DMUs. Subsequently, two cross‐efficiency secondary programming models are developed based on beneficial relationships. To obtain the final scores, the efficiency scores of the four models are integrated using the Shannon entropy method. Finally, two illustrative applications are presented to demonstrate the effectiveness and robustness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鉨汏闫完成签到,获得积分10
1秒前
fmx完成签到,获得积分10
2秒前
honey完成签到,获得积分10
2秒前
满意的初南完成签到 ,获得积分10
2秒前
冤家Gg完成签到,获得积分10
3秒前
cyy1226发布了新的文献求助10
3秒前
怡然帅完成签到 ,获得积分10
3秒前
肉肉完成签到,获得积分10
3秒前
冰魂应助小袁采纳,获得10
3秒前
狸小狐发布了新的文献求助10
3秒前
bodhi完成签到,获得积分10
4秒前
princeyxx完成签到,获得积分10
4秒前
北小棠完成签到,获得积分10
5秒前
moyu完成签到,获得积分10
5秒前
ZhangZaikuan完成签到,获得积分10
5秒前
chriskim发布了新的文献求助10
5秒前
5秒前
火星天完成签到,获得积分10
6秒前
6秒前
blUe完成签到,获得积分10
7秒前
zxs完成签到,获得积分10
7秒前
7秒前
游艺完成签到 ,获得积分10
8秒前
缥缈纲完成签到,获得积分10
8秒前
TIAOTIAO完成签到,获得积分10
8秒前
dodo应助冤家Gg采纳,获得200
8秒前
耿丹彤完成签到,获得积分10
8秒前
diu完成签到,获得积分10
9秒前
肥鹏完成签到,获得积分10
9秒前
arong完成签到,获得积分10
9秒前
yj1506837246发布了新的文献求助10
9秒前
9秒前
英俊的铭应助ZYP采纳,获得10
11秒前
ahead完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
俊逸的蜜蜂完成签到,获得积分10
12秒前
棍棍来也完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Material Weathering 400
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837799
求助须知:如何正确求助?哪些是违规求助? 3379844
关于积分的说明 10511402
捐赠科研通 3099477
什么是DOI,文献DOI怎么找? 1707127
邀请新用户注册赠送积分活动 821432
科研通“疑难数据库(出版商)”最低求助积分说明 772617