Assessing concept mapping competence using item expansion‐based diagnostic classification analysis

概念图 能力(人力资源) 计算机科学 概念学习 人工智能 形式概念分析 科学教育 机器学习 数据科学 数学教育 心理学 社会心理学 算法
作者
Xia Shu-lan,Peida Zhan,Kennedy Kam Ho Chan,Lijun Wang
出处
期刊:Journal of Research in Science Teaching [Wiley]
卷期号:61 (7): 1516-1542 被引量:1
标识
DOI:10.1002/tea.21897
摘要

Abstract Concept mapping is widely used as a tool for assessing students' understanding of science. To fully realize the diagnostic potential of concept mapping, a scoring method that not only provides an objective and accurate assessment of students' drawn concept maps but also provides a detailed understanding of students' proficiency and deficiencies in knowledge is necessary. However, few of the existing scoring methods focus on the latent constructs (e.g., knowledge, skills, and cognitive processes) that guide the creation of concept maps. Instead, they focus on the completeness of the concept map by assigning a composite score, which makes it difficult to generate targeted diagnostic feedback information for advancing students' learning. To apply the diagnostic classification model to the quantitative analysis of concept maps, this study introduced the novel application of the item expansion‐based diagnostic classification analysis (IE‐DCA) for this purpose. The IE‐DCA can not only assess students' concept mapping abilities along a continuum but also classify students according to their concept mapping attributes when constructing the concept maps. The application and benefits of this approach were illustrated using a physics concept‐mapping item related to particle and rigid body. Results showed that the estimated attribute profiles via the IE‐DCA provided more detailed information about students' latent constructs than the composite score. Overall, this study illustrates the feasibility and potential of applying IE‐DCA to analyze concept maps. Future applications of IE‐DCS in other assessments in science education are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助小程快跑采纳,获得10
刚刚
吹吹发布了新的文献求助10
刚刚
王珂完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
华仔应助yekindar采纳,获得10
2秒前
云起天山完成签到,获得积分10
3秒前
十一完成签到 ,获得积分10
4秒前
香蕉觅云应助白凌风采纳,获得30
4秒前
文静的可仁完成签到,获得积分10
4秒前
Orange应助冷酷的风华采纳,获得10
4秒前
李健应助猪猪hero采纳,获得10
5秒前
小蘑菇应助叶邴采纳,获得10
5秒前
xiaofeixia完成签到 ,获得积分10
5秒前
c程序语言完成签到,获得积分10
5秒前
难过早晨发布了新的文献求助10
6秒前
6秒前
李帆发布了新的文献求助10
6秒前
7秒前
齐天大圣完成签到,获得积分10
7秒前
紫鸢完成签到,获得积分10
8秒前
一由天完成签到,获得积分10
8秒前
娜娜子欧发布了新的文献求助10
8秒前
shasha发布了新的文献求助10
8秒前
9秒前
Anquan完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
刘传世发布了新的文献求助10
13秒前
蛇虫鼠蚁应助破三贼采纳,获得30
13秒前
JamesPei应助空白采纳,获得10
13秒前
Singularity应助柚柚采纳,获得10
14秒前
无限电话发布了新的文献求助10
14秒前
善学以致用应助我爱妹妹采纳,获得10
14秒前
15秒前
思源应助白凌风采纳,获得30
15秒前
科研通AI5应助兮豫采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810013
求助须知:如何正确求助?哪些是违规求助? 3354509
关于积分的说明 10371378
捐赠科研通 3070976
什么是DOI,文献DOI怎么找? 1686693
邀请新用户注册赠送积分活动 811058
科研通“疑难数据库(出版商)”最低求助积分说明 766484