亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DETECTION OF CHRONIC VENOUS INSUFFICIENCY CONDITION USING TRANSFER LEARNING WITH CONVOLUTIONAL NEURAL NETWORKS BASED ON THERMAL IMAGES

慢性静脉功能不全 卷积神经网络 人工智能 学习迁移 医学 稳健性(进化) 深度学习 联营 计算机科学 模式识别(心理学) 放射科 化学 生物化学 基因
作者
Nithyakalyani Krishnan,P. Muthu
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:36 (01) 被引量:4
标识
DOI:10.4015/s1016237223500308
摘要

Chronic Venous Insufficiency (CVI) is a venous incompetence condition that leads to improper blood circulation from the lower limbs towards the heart. This occurs as a result of blood pooling in the veins of the leg, resulting in twisted, dilated, and tortuous veins. Aging, obesity, prolonged standing or sitting, and lack of mobility are all important causes of the occurrence of this chronic disease. The cost of CVI diagnosis and treatment is extremely high. Infrared thermographic image analysis is used for early detection and reduces the cost of diagnosis. Deep learning (DL) techniques play an important role in early prediction and may aid clinicians in diagnosing CVI. An automated classification model will assist the physician in making a precise diagnosis of the abnormal vein and treating the patient according to the severity of the condition. There is a need for a model that can perform successful classification without the need for pre-processing when compared to the traditional machine learning (ML) methods that depend on ideal manual feature extraction to achieve optimal outcomes. In this research, we recommend the customized DenseNet-121 architecture for CVI detection and compare it with other advanced DL models to determine its efficacy. DenseNet-121 and other pre-trained convolutional neural network models, including EfficientNetB0 and Inception_v3, were trained using a transfer learning strategy. The experimental findings indicate that the proposed modified DenseNet-121 model outperformed other classical methods. The reported results provide evidence of the robustness of the suggested method in addition to the high accuracy that it possessed, as shown by the overall testing accuracy of 97.4%. Thus, this study can be considered as a non-invasive and cost-effective approach for diagnosing chronic venous insufficiency condition in lower extremity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmooo发布了新的文献求助10
19秒前
31秒前
31秒前
Jello发布了新的文献求助10
36秒前
vampire发布了新的文献求助10
37秒前
钉钉完成签到 ,获得积分10
37秒前
37秒前
40秒前
mmmooo完成签到,获得积分10
41秒前
vampire完成签到,获得积分10
47秒前
1分钟前
哭泣朝雪发布了新的文献求助20
1分钟前
小郭完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
奋斗人雄完成签到,获得积分10
1分钟前
1分钟前
hodi完成签到,获得积分10
1分钟前
1分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
搞什么科研完成签到,获得积分20
2分钟前
丘比特应助ceeray23采纳,获得20
2分钟前
慕青应助哭泣朝雪采纳,获得10
2分钟前
研友_VZG7GZ应助xixi采纳,获得10
2分钟前
以七完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
clhoxvpze完成签到 ,获得积分10
3分钟前
liao完成签到 ,获得积分10
3分钟前
21145077发布了新的文献求助10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
DBP87弹完成签到 ,获得积分10
3分钟前
3分钟前
万能图书馆应助21145077采纳,获得10
3分钟前
华仔应助hourt2395采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509468
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489671
捐赠科研通 4539142
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469759
关于科研通互助平台的介绍 1441996