Dynamic spatial–temporal graph convolutional recurrent networks for traffic flow forecasting

计算机科学 图形 动态网络分析 杠杆(统计) 特征学习 人工智能 数据挖掘 理论计算机科学 计算机网络
作者
Z.H. Xia,Yong Zhang,Jielong Yang,Linbo Xie
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122381-122381 被引量:16
标识
DOI:10.1016/j.eswa.2023.122381
摘要

Traffic flow forecasting is crucial for making appropriate route guidance and vehicle scheduling schemes in intelligent transportation systems. However, recent graph-based methods leverage pre-defined static graphs to describe the spatial–temporal characteristic of road networks. The interactions of two road segments are changeable under the influence of natural environmental and socioeconomic factors, while these methods are not sufficient to capture the complicated dynamic correlations of different nodes. To address these problems, we propose a novel dynamic graph-based deep learning framework with dynamic graph recurrent network for traffic flow forecasting, called Dynamic Spatial–temporal Graph Recurrent Neural Networks. In this framework, a novel dynamic graph generator is designed to obtain the dynamic representation of nodes, which employs multi-head attention network and dynamic node embedding to capture hidden spatial dependency more effectively. To infer the edge status of dynamic graph at different times, the generated dynamic graph is trained as special time series data via dynamic graph recurrent neural network for downstream time-series prediction. In contrast to methods straightforwardly concatenating static graphs and dynamic graphs, a novel fusion framework integrates two-channel convolutional networks with penalty terms and a gate fusion layer to extract dynamic spatial dependency from multiple graphs for improving forecasting accuracy and reducing computational consumption. Experiments on three real-world datasets are carried out to evaluate the superior performance of our model. Compared with previous state-of-the-art baselines, the proposed method performs much better with 10%–26% improvements on three datasets. The results also indicate that our model is robust against emergent traffic situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GT关闭了GT文献求助
刚刚
haojiaolv完成签到,获得积分10
1秒前
陈博士发布了新的文献求助10
2秒前
大轩发布了新的文献求助10
2秒前
皮老师发布了新的文献求助10
4秒前
汉堡包应助元素分希怡采纳,获得10
4秒前
酷波er应助杰么酷采纳,获得10
6秒前
烟花应助学术小垃圾采纳,获得10
6秒前
8秒前
April完成签到 ,获得积分10
9秒前
9秒前
orixero应助陈博士采纳,获得10
9秒前
9秒前
renshiq完成签到,获得积分10
9秒前
万默完成签到 ,获得积分10
13秒前
寒冷寻桃发布了新的文献求助10
13秒前
13秒前
14秒前
自然芷文发布了新的文献求助10
14秒前
15秒前
慕青应助Rn采纳,获得10
15秒前
杰么酷完成签到,获得积分20
15秒前
善学以致用应助杨舒舒采纳,获得10
16秒前
云草发布了新的文献求助10
18秒前
愉快的真发布了新的文献求助30
18秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
19秒前
许甜甜鸭应助科研通管家采纳,获得20
19秒前
852应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
诺贝尔发布了新的文献求助10
21秒前
Biubiu完成签到 ,获得积分10
21秒前
U2发布了新的文献求助20
21秒前
22秒前
22秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826255
求助须知:如何正确求助?哪些是违规求助? 3368692
关于积分的说明 10451867
捐赠科研通 3088099
什么是DOI,文献DOI怎么找? 1698959
邀请新用户注册赠送积分活动 817222
科研通“疑难数据库(出版商)”最低求助积分说明 770100