阿霉素
体内
药理学
化学
毒性
盐酸阿霉素
肝细胞癌
PEG比率
耐受性
细胞毒性
肝癌
脂质体
化疗
体外
医学
生物化学
癌症研究
生物
内科学
不利影响
生物技术
有机化学
财务
经济
作者
Mine Diril,Kemal Volkan Özdokur,Yeliz Yıldırım,H. Yeşim Karasulu
标识
DOI:10.1080/10837450.2023.2274394
摘要
Hepatocellular carcinoma (HCC), more than 800 000 cases reported annually, is the most common primary liver cancer globally. Doxorubicin hydrochloride (Dox-HCl) is a widely used chemotherapy drug for HCC, but efficacy and tolerability are limited, thus critical to develop delivery systems that can target Dox-HCl to the tumour site. In this study, liver-targeting ligand glycyrrhetinic acid (Gly) was conjugated to polyethylene glycol (PEG) via Steglich reaction and incorporated in liposomes, which were then loaded with Dox-HCl by pH gradient method. The optimal formulation Gly–Peg-Dox-ProLP-F6 showed high Dox-HCl encapsulation capacity (90.0%±1.85%), low particle size (120 ± 3.2 nm). Gly–Peg-Dox-ProLP-F6 formulation demonstrated substantially greater toxicity against HCC cells than commercial Dox-HCl formulation (greater against 1.14, 1.5, 1.24 fold against Hep G2, Mahlavu and Huh-7 cells, respectively), but was 1.86-fold less cytotoxic against non-cancerous cell line AML-12. It increased permeability from apical to basolateral (A–B) approximately 2-fold. Gly–Peg-Dox-ProLP-F6 demonstrated superior antitumor efficacy in mouse liver cancer model as evaluated by IVIS. Isolated mouse liver tissue contained 2.48-fold Dox more than Dox-HCl after administration of Gly–Peg-Dox-ProLP-F6, while accumulation in heart tissue was substantially lower. This Gly–Peg-Dox-ProLP-F6 formulation may improve HCC outcomes through superior liver targeting for enhanced tumour toxicity with lower systemic toxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI