Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy

强化学习 计算机科学 维数之咒 数学优化 适应性 调度(生产过程) 状态空间 人工智能 数学 生态学 生物 统计
作者
Yingchao Dong,Hongli Zhang,Cong Wang,Xiaojun Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107230-107230 被引量:15
标识
DOI:10.1016/j.engappai.2023.107230
摘要

The collaborative optimization dispatching of multiple energy flows plays a crucial role in achieving the economic and efficient low-carbon operation of integrated energy systems (IESs). However, the dispatching problem for IESs is characterized by high dimensionality, non-linearity, and complex coupling. Furthermore, the integration of renewable energy sources and flexible loads has transformed the IES into a complex dynamic system with significant uncertainty. Traditional intelligent optimization algorithms exhibit poor adaptability and lengthy solution computation time when tackling such problems. In contrast, deep reinforcement learning (DRL), as an interactive trial-and-error learning method, has shown improved decision-making capabilities. In view of this, a data-driven soft actor-critic (SAC) deep reinforcement learning-based approach is proposed in this paper for interval optimal dispatch of IESs considering multiple uncertainties. First, the basic principle of SAC reinforcement learning is introduced in detail, and the basic framework of reinforcement learning for interval optimal scheduling of IESs is constructed. Then, the environment model of agent interaction is constructed, and the action and state space of DRL, as well as the reward mechanism and neural network structure, are designed. Finally, a typical IES case is experimentally analyzed and compared with three popular DRL algorithms and five state-of-the-art intelligent optimization algorithms. The experimental results demonstrate the advantages and effectiveness of the proposed method in solving the optimal dispatching of IESs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得30
1秒前
1秒前
渡增越发布了新的文献求助10
1秒前
orixero应助港岛妹妹采纳,获得10
1秒前
程艳完成签到 ,获得积分10
2秒前
3秒前
优秀的易文完成签到,获得积分10
3秒前
慕青应助凡凡没烦恼采纳,获得10
3秒前
珍珠奶茶发布了新的文献求助10
4秒前
沙粒子发布了新的文献求助10
4秒前
4秒前
6秒前
Animagus发布了新的文献求助10
7秒前
王文学发布了新的文献求助10
7秒前
7秒前
lab发布了新的文献求助20
8秒前
在水一方应助韩凡采纳,获得10
8秒前
冰魂应助真实的火车采纳,获得10
10秒前
10秒前
12秒前
12秒前
大模型应助水123采纳,获得10
14秒前
儒雅晓霜发布了新的文献求助10
14秒前
温柔的姿发布了新的文献求助10
14秒前
香芹又青完成签到,获得积分10
14秒前
王文学完成签到,获得积分10
17秒前
17秒前
英姑应助健忘蘑菇采纳,获得10
17秒前
科研通AI5应助11111采纳,获得10
17秒前
17秒前
要吃虾饺吗完成签到,获得积分10
18秒前
虚幻的文龙完成签到,获得积分10
18秒前
云边发布了新的文献求助10
18秒前
多肉葡萄关注了科研通微信公众号
19秒前
zz发布了新的文献求助10
19秒前
19秒前
科研通AI5应助王文学采纳,获得10
21秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794917
求助须知:如何正确求助?哪些是违规求助? 3339846
关于积分的说明 10297717
捐赠科研通 3056457
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805101
科研通“疑难数据库(出版商)”最低求助积分说明 762330