A hybrid-aided approach with adaptive state update for estimating the state-of-charge of LiFePO4 batteries considering temperature uncertainties

荷电状态 稳健性(进化) 计算机科学 卡尔曼滤波器 均方误差 电池组 控制理论(社会学) 算法 电池(电) 人工智能 功率(物理) 数学 控制(管理) 物理 统计 化学 基因 量子力学 生物化学
作者
Jiawei Peng,Paul Takyi‐Aninakwa,Shunli Wang,Faisal Masahudu,Xiaoyong Yang,Josep M. Guerrero
出处
期刊:Journal of energy storage [Elsevier]
卷期号:76: 109758-109758 被引量:20
标识
DOI:10.1016/j.est.2023.109758
摘要

Developing an accurate state of charge (SOC) estimation method is crucial for proper monitoring and management of electric vehicles (EVs). As deep learning methods advance, it is critical to design a network structure for SOC estimation that is accurate, flexible, and adaptable to different driving conditions. However, these methods are hindered by high computational costs and trial-and-error training approaches, which compromise their performance. Therefore, this paper proposes a variational epoch selector for a multi-layered long short-term memory (LSTM) network with an adaptive weighted extended Kalman filter (AWEKF) for SOC estimation of lithium-ion batteries. First, a random weight (RW) algorithm is proposed to variably select the required number of training epochs suitable to train the LSTM network for SOC estimation using three domain knowledge, which improves stability, accuracy, robustness against uncertainties, etc., with a significant reduction in model computational training costs and errors. Second, the AWEKF with feedback correction ability is proposed to optimize the estimations of the network to map the nonlinear characteristics and minimize the output SOC fluctuations and errors. The estimations critically investigate the various key factors for the proposed RWLSTM strategy at different temperatures under real-world simulated driving cycles using a lithium iron phosphate battery. Finally, the results show that the mean absolute error and root mean square error of the proposed RWLSTM and RWLSTM-AWEKF strategies are <0.6% and 0.2%, respectively, under various driving conditions, showing their efficiency in estimating the SOC by utilizing battery domain knowledge for BMS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔小高发布了新的文献求助10
1秒前
龙成阳完成签到,获得积分10
2秒前
Accept完成签到,获得积分10
2秒前
哈基米发布了新的文献求助10
3秒前
珂珂发布了新的文献求助10
3秒前
今晚月色发布了新的文献求助10
4秒前
浮游应助努力生活的小柴采纳,获得10
4秒前
lanlan完成签到 ,获得积分10
4秒前
科研通AI6应助负责的方盒采纳,获得10
4秒前
重大化工小白完成签到,获得积分10
5秒前
李健的小迷弟应助666采纳,获得10
5秒前
6秒前
JamesPei应助yinlao采纳,获得10
6秒前
aaaaaa完成签到 ,获得积分10
7秒前
8秒前
liujiaying发布了新的文献求助20
8秒前
非而者厚应助KYTYYDS采纳,获得30
8秒前
8秒前
yueban发布了新的文献求助10
9秒前
狂炫AD钙奶完成签到,获得积分10
9秒前
壮观的白羊完成签到 ,获得积分10
9秒前
9秒前
xiaomin关注了科研通微信公众号
9秒前
大模型应助epiphany采纳,获得10
9秒前
科研yu完成签到,获得积分10
9秒前
SciGPT应助怕孤单的安蕾采纳,获得10
10秒前
10秒前
吴彦祖应助坦率的冷荷采纳,获得10
11秒前
LX完成签到,获得积分10
12秒前
旺仔小高发布了新的文献求助10
13秒前
今晚月色完成签到,获得积分10
13秒前
13秒前
肉丝丝发布了新的文献求助10
13秒前
13秒前
搜集达人应助乐观伟诚采纳,获得10
14秒前
zjz完成签到,获得积分20
15秒前
16秒前
16秒前
无极微光应助xibei采纳,获得20
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461519
求助须知:如何正确求助?哪些是违规求助? 4566529
关于积分的说明 14305591
捐赠科研通 4492242
什么是DOI,文献DOI怎么找? 2460810
邀请新用户注册赠送积分活动 1450050
关于科研通互助平台的介绍 1425626