A novel smart framework for sustainable nanocomposite electrolytes based on ionic liquids of dye-sensitized solar cells by a covalently multifunctional graphene oxide-vinyl imidazole/4-tert-butylpyridine cobalt complex

离子液体 色素敏化染料 电解质 石墨烯 无机化学 碘化物 化学 氧化物 纳米复合材料 电化学 氧化钴 材料科学 化学工程 电极 有机化学 纳米技术 物理化学 催化作用 工程类
作者
Mohammad Mohammadizadeh Boghrabad,Elaheh Kowsari,Seeram Ramakrishna,Saeedeh Sarabadani Tafreshi,Mahsa Gholambargani,Mahboobeh Rafieepoor Chirani,Shiva Orangi,Mohammad Gheibi,Majid Abdouss,Amutha Chinnappan,Nora H. de Leeuw
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:945: 169241-169241 被引量:6
标识
DOI:10.1016/j.jallcom.2023.169241
摘要

In this study, covalently multifunctional graphene oxide (GO) with vinyl imidazole/4-tert-butylpyridine cobalt complex (GO-VI/TBP cobalt complex) was synthesized through a novel approach. To this end, GO was functionalized with 1-vinyl imidazole (VI), followed by establishing a reaction between GO-VI, 4-tert-butylpyridine (TBP), and anhydrous CoCl2. Then, in dye-sensitized solar cells (DSSCs), this synthesized compound was used as an effective additive in sustainable nanocomposite electrolytes based on 1-butyl-3-methylimidazolium iodide (BMII) and 1-ethyl-3-methylimidazolium iodide (EMII) ionic liquids (ILs). Adding 0.6 wt% of optimal GO-VI/TBP cobalt complex to electrolyte increased the conversion efficiency of DSSCs significantly up to 7.359 % compared to 4.130 % in the initial standard DSSCs. This 78.18 % efficiency increase demonstrates how the GO-VI/TBP cobalt complex as a molecular bridge affects the conductivity and electron transport in the electrolyte based on ionic liquids. By enhancing the I-/I3- diffusion coefficient, cobalt complexes with the TBP ligand and nitrogen-containing heterocyclic compounds in GO-VI/TBP cobalt complex compounds accelerated electron transfers and ion conductivity in the electrolyte. As a result, the short circuit current density (Jsc) increased from 8.131 to 14.301 mA cm−2, and the open-circuit voltage (VOC) rose from 0.725 to 0.754 V. Density functional theory (DFT) studies showed an increase in the conduction band of the TiO2 electrode after the adsorption of the electrolyte additives on its surface. This upward shift resulted in the quick injection of electrons from the dye’s lowest unoccupied molecular orbital (LUMO) to the TiO2 electrode’s conduction band. Finally, a soft computing system was designed to predict experimental features (VOC and JSC) based on effective factors. Based on the results, Random Tree, Random Forest, and Multilayer Perceptron (MLP) methods with correlation coefficients greater than 0.92 have the highest efficiency for creating the soft sensor. Overall, this work can be employed as a novel strategy for advancing the usage of graphene derivatives in this sector to boost the performance of electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
YYA完成签到 ,获得积分10
2秒前
Bin_Liu发布了新的文献求助10
4秒前
6秒前
戈多发布了新的文献求助10
6秒前
7秒前
7秒前
万能图书馆应助michelmeis采纳,获得10
9秒前
刘小天完成签到,获得积分10
9秒前
10秒前
董绮敏完成签到 ,获得积分10
11秒前
开心的澜发布了新的文献求助10
11秒前
11秒前
开心的谷兰完成签到,获得积分10
12秒前
墨尘发布了新的文献求助10
13秒前
小玉关注了科研通微信公众号
13秒前
张宏宇发布了新的文献求助10
14秒前
CC发布了新的文献求助10
14秒前
大模型应助温暖砖头采纳,获得10
14秒前
18秒前
我不到啊完成签到,获得积分10
19秒前
泥泥完成签到,获得积分10
19秒前
xunxunmimi发布了新的文献求助50
20秒前
21秒前
21秒前
心灵美银耳汤完成签到,获得积分20
22秒前
赵坤煊完成签到 ,获得积分0
22秒前
22秒前
搬砖人完成签到,获得积分10
23秒前
xxxxxxxxx完成签到 ,获得积分10
25秒前
26秒前
26秒前
CC发布了新的文献求助10
27秒前
材化小将军完成签到,获得积分10
28秒前
宁小满完成签到,获得积分10
28秒前
cwn完成签到 ,获得积分10
28秒前
青青完成签到 ,获得积分10
28秒前
CC完成签到,获得积分10
29秒前
study完成签到,获得积分0
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779565
求助须知:如何正确求助?哪些是违规求助? 3325025
关于积分的说明 10221059
捐赠科研通 3040157
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522