Improvement of Min-Entropy Evaluation Based on Pruning and Quantized Deep Neural Network

计算机科学 人工神经网络 熵(时间箭头) 人工智能 修剪 深度学习 随机森林 计算 量化(信号处理) 机器学习 密码学 循环神经网络 数据挖掘 模式识别(心理学) 算法 生物 物理 量子力学 农学
作者
Haohao Li,Jianguo Zhang,Zhihu Li,Juan Liu,Yu Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1410-1420 被引量:1
标识
DOI:10.1109/tifs.2023.3240859
摘要

In the field of information security, the unpredictability of random numbers plays determinant role according to the security of cryptographic systems. However, limited by the capability of pattern recognition and data mining, statistical-based methods for random number security assessment can only detect whether there are obvious statistical flaws in random sequences. In recent years, some machine learning-based techniques such as deep neural networks and prediction-based methods applied to random number security have exhibited superior performance. Concurrently, the proposed deep learning models bring out issues of large number of parameters, high storage space occupation and complex computation. In this paper, for the challenge of random number security analysis: building high-performance predictive models, we propose an effective analysis method based on pruning and quantized deep neural network. Firstly, we train a temporal pattern attention-based long short-term memory (TPA-LSTM) model with complex structure and good prediction performance. Secondly, through pruning and quantization operations, the complexity and storage space occupation of the TPA-LSTM model were reduced. Finally, we retrain the network to find the best model and evaluate the effectiveness of this method using various simulated data sets with known min-entropy values. By comparing with related work, the TPA-LSTM model provides more accurate estimates: the relative error is less than 0.43%. In addition, the model weight parameters are reduced by more than 98% and quantized to 2 bits (compression over 175x) without accuracy loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝岳洋完成签到 ,获得积分10
6秒前
cdercder应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
余味应助科研通管家采纳,获得10
7秒前
韦幻莲完成签到,获得积分10
8秒前
dudu完成签到 ,获得积分10
8秒前
afar完成签到 ,获得积分10
10秒前
STH完成签到 ,获得积分10
11秒前
15秒前
呆萌的雁荷完成签到,获得积分10
17秒前
胡楠完成签到,获得积分10
19秒前
娜行完成签到 ,获得积分10
22秒前
山山而川完成签到 ,获得积分10
23秒前
唠嗑在呐完成签到,获得积分10
25秒前
cn完成签到 ,获得积分10
27秒前
CZF完成签到 ,获得积分10
28秒前
Alicia完成签到 ,获得积分10
30秒前
磊磊完成签到,获得积分10
34秒前
音悦台完成签到,获得积分10
35秒前
38秒前
香山叶正红完成签到 ,获得积分10
43秒前
木又完成签到 ,获得积分10
44秒前
46秒前
c1302128340完成签到,获得积分10
50秒前
yi完成签到,获得积分10
51秒前
r41r32发布了新的文献求助10
52秒前
53秒前
乔杰完成签到 ,获得积分10
56秒前
默默地读文献完成签到,获得积分0
56秒前
大气夜山完成签到 ,获得积分10
56秒前
alixy完成签到,获得积分10
57秒前
lhn完成签到 ,获得积分10
57秒前
毛毛完成签到,获得积分10
57秒前
李佳倩完成签到 ,获得积分10
1分钟前
kingfly2010完成签到,获得积分10
1分钟前
史克珍香完成签到 ,获得积分10
1分钟前
Bizibili完成签到,获得积分10
1分钟前
松柏完成签到 ,获得积分10
1分钟前
一一完成签到 ,获得积分10
1分钟前
曾经白亦完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349064
关于积分的说明 10341264
捐赠科研通 3065204
什么是DOI,文献DOI怎么找? 1682974
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600